Geometric quantization on CR manifolds

被引:7
|
作者
Hsiao, Chin-Yu [1 ]
Ma, Xiaonan [2 ]
Marinescu, George [3 ]
机构
[1] Acad Sinica, Inst Math, Astron Math Bldg No 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[2] Univ Paris Cite, CNRS, IMJ PRG, Batiment Sophie Germain,UFR Math Case 7012, F-75205 Paris 13, France
[3] Univ Cologne, Dept Math & Comp Sci, Weyertal 86-90, D-50931 Cologne, Germany
关键词
Szego kernel; moment map; CR manifolds; MULTIPLICITIES; OPERATORS; FORMULA;
D O I
10.1142/S0219199722500742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact connected orientable Cauchy-Riemann (CR) manifold with the action of a compact Lie group G. Under natural pseudoconvexity assumptions we show that the CR Guillemin-Sternberg map is an isomorphism at the level of Sobolev spaces of CR functions, modulo a finite-dimensional subspace. As application we study this map for holomorphic line bundles which are positive near the inverse image of 0 by the momentum map. We also show that "quantization commutes with reduction" for Sasakian manifolds.
引用
下载
收藏
页数:73
相关论文
共 50 条
  • [1] On the geometric quantization of Jacobi manifolds
    deLeon, M
    Marrero, JC
    Padron, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) : 6185 - 6213
  • [2] On the geometric quantization of contact manifolds
    Fitzpatrick, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) : 2384 - 2399
  • [4] On the geometric quantization of twisted Poisson manifolds
    Petalidou, Fani
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (08)
  • [5] ON THE GEOMETRIC-QUANTIZATION OF POISSON MANIFOLDS
    VAISMAN, I
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) : 3339 - 3345
  • [6] GEOMETRIC-QUANTIZATION ON PRESYMPLECTIC MANIFOLDS
    VAISMAN, I
    MONATSHEFTE FUR MATHEMATIK, 1983, 96 (04): : 293 - 310
  • [7] Geometric Quantization on Kahler and Symplectic Manifolds
    Ma, Xiaonan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 785 - 810
  • [8] Geometric quantization of almost toric manifolds
    Miranda, Eva
    Presas, Francisco
    Solha, Romero
    JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (04) : 1147 - 1168
  • [9] GEOMETRIC QUANTIZATION OF ODD DIMENSIONAL SPINc MANIFOLDS
    Wang, Jian
    Wang, Yong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 223 - 234
  • [10] Geometric quantization of b-symplectic manifolds
    Braverman, Maxim
    Loizides, Yiannis
    Song, Yanli
    JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (01) : 1 - 36