Carrier-Density Control of the Quantum-Confined 1T-TiSe2 Charge Density Wave

被引:4
|
作者
Jaouen, T. [1 ]
Pulkkinen, A. [2 ,3 ]
Rumo, M. [2 ,4 ]
Kremer, G. [2 ,5 ]
Salzmann, B. [2 ]
Nicholson, C. W. [2 ,6 ]
Mottas, M. -L. [2 ]
Giannini, E. [7 ]
Tricot, S. [1 ]
Hildebrand, B. [2 ]
Monney, C. [2 ]
Schieffer, P. [1 ]
机构
[1] Univ Rennes, CNRS, IPR Inst Phys Rennes, UMR 6251, F-35000 Rennes, France
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[3] Univ West Bohemia, New Technol Res Ctr, CZ-30100 Plzen, Czech Republic
[4] Haute Ecole Ingn & Architecture Fribourg, CH-1700 Fribourg, Switzerland
[5] Univ Lorraine, CNRS, Inst Jean Lamour, Campus ARTEM,UMR 7198, 2 Allee Andre Guinier,BP 50840, F-54011 Nancy, France
[6] Fritz Haber Inst Max Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
[7] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
关键词
TOTAL-ENERGY CALCULATIONS; SUPERCONDUCTIVITY; APPROXIMATION; DYNAMICS;
D O I
10.1103/PhysRevLett.130.226401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using angle-resolved photoemission spectroscopy, combined with first principle and coupled self -consistent Poisson-Schrodinger calculations, we demonstrate that potassium (K) atoms adsorbed on the low-temperature phase of 1T-TiSe2 induce the creation of a two-dimensional electron gas (2DEG) and quantum confinement of its charge-density wave (CDW) at the surface. By further changing the K coverage, we tune the carrier density within the 2DEG that allows us to nullify, at the surface, the electronic energy gain due to exciton condensation in the CDW phase while preserving a long-range structural order. Our Letter constitutes a prime example of a controlled exciton-related many-body quantum state in reduced dimensionality by alkali-metal dosing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Origin of the charge density wave in 1T-TiSe2
    Zhu, Zhiyong
    Cheng, Yingchun
    Schwingenschloegl, Udo
    PHYSICAL REVIEW B, 2012, 85 (24):
  • [2] Dichotomy of metallic electron density and charge density wave in 1T-TiSe2
    Jeong, Dongjoon
    Kim, Jimin
    Jin, Kyung-Hwan
    Kim, Jaeyoung
    Yeom, Han Woong
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [3] Resistivity anisotropy and charge density wave in 1T-TiSe2
    Nader, A.
    LeBlanc, A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (04) : 363 - 366
  • [4] The chiral charge density wave transition in 1T-TiSe2
    van Wezel, Jasper
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2011), 2012, 391
  • [5] Anisotropic charge density wave in layered 1T-TiSe2
    Qiao, Qiao
    Zhou, Songsong
    Tao, Jing
    Zheng, Jin-Cheng
    Wu, Lijun
    Ciocys, Samuel T.
    Iavarone, Maria
    Srolovitz, David J.
    Karapetrov, Goran
    Zhu, Yimei
    PHYSICAL REVIEW MATERIALS, 2017, 1 (05):
  • [6] Resistivity anisotropy and charge density wave in 1T-TiSe2
    A Nader
    A LeBlanc
    Indian Journal of Physics, 2013, 87 : 363 - 366
  • [7] Charge-density-wave melted superconductivity in 1T-TiSe2
    Hu, Q.
    Liu, J. Y.
    Shi, Q.
    Zhang, F. J.
    Zhong, Y.
    Lei, L.
    Ang, R.
    EPL, 2021, 135 (05)
  • [8] Stable charge density wave phase in a 1T-TiSe2 monolayer
    Singh, Bahadur
    Hsu, Chuang-Han
    Tsai, Wei-Feng
    Pereira, Vitor M.
    Lin, Hsin
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [9] Charge density wave hampers exciton condensation in 1T-TiSe2
    Lian, Chao
    Ali, Zulfikhar A.
    Wong, Bryan M.
    PHYSICAL REVIEW B, 2019, 100 (20)
  • [10] Structural involvement in the melting of the charge density wave in 1T-TiSe2
    Burian, Max
    Porer, Michael
    Mardegan, Jose R. L.
    Esposito, Vincent
    Parchenko, Sergii
    Burganov, Bulat
    Gurung, Namrata
    Ramakrishnan, Mahesh
    Scagnoli, Valerio
    Ueda, Hiroki
    Francoual, Sonia
    Fabrizi, Federica
    Tanaka, Yoshikazu
    Togashi, Tadashi
    Kubota, Yuya
    Yabashi, Makina
    Rossnagel, Kai
    Johnson, Steven L.
    Staub, Urs
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):