SanMove: next location recommendation via self-attention network

被引:0
|
作者
Wang, Bin [1 ]
Li, Huifeng [1 ]
Tong, Le [1 ]
Zhang, Qian [1 ]
Zhu, Sulei [1 ]
Yang, Tao [2 ]
机构
[1] Shanghai Normal Univ, Shanghai, Peoples R China
[2] Shanghai Urban & Rural Construct & Traff Dev Res I, Shanghai, Peoples R China
关键词
Next location prediction; Self-attention network; Auxiliary information; PREDICTION;
D O I
10.1108/DTA-03-2022-0093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
PurposeThis paper aims to address the following issues: (1) most existing methods are based on recurrent network, which is time-consuming to train long sequences due to not allowing for full parallelism; (2) personalized preference generally are not considered reasonably; (3) existing methods rarely systematically studied how to efficiently utilize various auxiliary information (e.g. user ID and time stamp) in trajectory data and the spatiotemporal relations among nonconsecutive locations.Design/methodology/approachThe authors propose a novel self-attention network-based model named SanMove to predict the next location via capturing the long- and short-term mobility patterns of users. Specifically, SanMove uses a self-attention module to capture each user's long-term preference, which can represent her personalized location preference. Meanwhile, the authors use a spatial-temporal guided noninvasive self-attention (STNOVA) module to exploit auxiliary information in the trajectory data to learn the user's short-term preference.FindingsThe authors evaluate SanMove on two real-world datasets. The experimental results demonstrate that SanMove is not only faster than the state-of-the-art recurrent neural network (RNN) based predict model but also outperforms the baselines for next location prediction.Originality/valueThe authors propose a self-attention-based sequential model named SanMove to predict the user's trajectory, which comprised long-term and short-term preference learning modules. SanMove allows full parallel processing of trajectories to improve processing efficiency. They propose an STNOVA module to capture the sequential transitions of current trajectories. Moreover, the self-attention module is used to process historical trajectory sequences in order to capture the personalized location preference of each user. The authors conduct extensive experiments on two check-in datasets. The experimental results demonstrate that the model has a fast training speed and excellent performance compared with the existing RNN-based methods for next location prediction.
引用
收藏
页码:330 / 343
页数:14
相关论文
共 50 条
  • [1] MGSAN: A Multi-granularity Self-attention Network for Next POI Recommendation
    Li, Yepeng
    Xian, Xuefeng
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT II, 2021, 13081 : 193 - 208
  • [2] Sequential Recommendation via Stochastic Self-Attention
    Fan, Ziwei
    Liu, Zhiwei
    Wang, Yu
    Wang, Alice
    Nazari, Zahra
    Zheng, Lei
    Peng, Hao
    Yu, Philip S.
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2036 - 2047
  • [3] Variational Self-attention Network for Sequential Recommendation
    Zhao, Jing
    Zhao, Pengpeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    Zhou, Xiaofang
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1559 - 1570
  • [4] Self-attention Based Collaborative Neural Network for Recommendation
    Ma, Shengchao
    Zhu, Jinghua
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2019, 2019, 11604 : 235 - 246
  • [5] Exception Handling Recommendation Based on Self-Attention Network
    Lin, Kai
    Tao, Chuanqi
    Huang, Zhiqiu
    2021 IEEE INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS (ISSREW 2021), 2021, : 282 - 283
  • [6] Predicting the next location: A self-attention and recurrent neural network model with temporal context
    Zeng, Jun
    He, Xin
    Tang, Haoran
    Wen, Junhao
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (06)
  • [7] Using Attributes Explicitly Reflecting User Preference in a Self-Attention Network for Next POI Recommendation
    Li, Ruijing
    Guo, Jianzhong
    Liu, Chun
    Li, Zheng
    Zhang, Shaoqing
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (08)
  • [8] Collaborative Self-Attention Network for Session-based Recommendation
    Luo, Anjing
    Zhao, Pengpeng
    Liu, Yanchi
    Zhuang, Fuzhen
    Wang, Deqing
    Xu, Jiajie
    Fang, Junhua
    Sheng, Victor S.
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2591 - 2597
  • [9] CSAN: Contextual Self-Attention Network for User Sequential Recommendation
    Huang, Xiaowen
    Qian, Shengsheng
    Fang, Quan
    Sang, Jitao
    Xu, Changsheng
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 447 - 455
  • [10] Feature Interaction Dual Self-attention network for sequential recommendation
    Zhu, Yunfeng
    Yao, Shuchun
    Sun, Xun
    FRONTIERS IN NEUROROBOTICS, 2024, 18