ON ESTIMATES FOR ORDERS OF BEST M-TERM APPROXIMATIONS OF MULTIVARIATE FUNCTIONS IN ANISOTROPIC LORENTZ-KARAMATA SPACES

被引:1
|
作者
Akishev, G. A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Kazakhstan branch, Kazhymukan Str 11, Astana 100008, Kazakhstan
[2] Inst Math & Math Modelling, Pushkin Str 125, Alma Ata 050010, Kazakhstan
来源
UFA MATHEMATICAL JOURNAL | 2023年 / 15卷 / 01期
关键词
Lorentz-Karamata space; Nikolskii-Besov space; M-term approximation; SPARSE TRIGONOMETRIC APPROXIMATION; BESOV CLASSES; WIDTHS;
D O I
10.13108/2023-15-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we consider a well-known class of weakly varying functions and by these functions we define an anisotropic Lorentz-Karamata space of 2 pi-periodic functions of many variables. Particular cases of these spaces are anisotropic Lorentz-Zygmund and Lorentz spaces. In the anisotropic Lorentz-Karamata space we define an analogue of Nikolskii-Besov space. The main aim of the paper is to find sharp orders of best M-term trigonometric approximation of functions from Nikolskii-Besov space by the norm of another anisotropic Lorentz-Karamata space. In the paper we establish order sharp two-sided estimates of best M-term trigonometric approximations for the functions from the Nikolskii-Besov space in the anisotropic Lorentz-Karamata space in various metrics. In order to prove an upper bound for M-term approximations, we employ an idea of the greedy algorithms proposed by V.N. Temlyakov and we modify it for the anisotropic Lorentz-Karamata space.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 40 条