Traffic emission estimation under incomplete information with spatiotemporal convolutional GAN

被引:2
|
作者
Zhao, Zhenyi [1 ]
Cao, Yang [1 ]
Xu, Zhenyi [1 ,2 ]
Kang, Yu [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[3] Univ Sci & Technol China, Inst Adv Technol, Hefei 230088, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 21期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Traffic emission estimation; Incomplete information; Adversarial generative network; Spatiotemporal convolution; ROAD TRANSPORT;
D O I
10.1007/s00521-023-08420-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise emission estimation of vehicle exhausts is crucial to urban traffic pollution prevention and control. Existing methods utilize the widely distributed and large number of GPS data to estimate the emission distribution of vehicles in the road network. However, the emission features are insufficient to decrease the estimation accuracy when the data distribution is uneven and sparse in the spatial and temporal domains. To address this problem, we propose a two-step emission estimation model under incomplete information, which exploits the spatiotemporal propagation features of emission information. Specifically, an adaptive smoothing strategy reconstructs a second-by-second emission rate field by modeling the correlation of neighboring traffic states, to address the inconsistency of time intervals between emission models and sampling intervals. Then a spatiotemporal convolutional GAN (ST-CGAN) is proposed, which introduces the spatiotemporal convolution operator to generate the traffic emission by temporal features and structural similarity. We evaluated the proposed method using the GPS trajectory data on Didi Chuxing GAIA Open Dataset. The framework aligns GPS data and emission models and reconstructs effectively the high-emission features in traffic networks. The proposed ST-CGAN generates a more reasonable spatial and temporal distribution of vehicle emissions than state-of-the-art methods.
引用
收藏
页码:15821 / 15835
页数:15
相关论文
共 50 条
  • [1] Traffic emission estimation under incomplete information with spatiotemporal convolutional GAN
    Zhenyi Zhao
    Yang Cao
    Zhenyi Xu
    Yu Kang
    [J]. Neural Computing and Applications, 2023, 35 : 15821 - 15835
  • [2] Blocking probability estimation for general traffic under incomplete information
    Faragó, A
    [J]. ICC 2000: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONFERENCE RECORD, VOLS 1-3: GLOBAL CONVERGENCE THROUGH COMMUNICATIONS, 2000, : 1547 - 1551
  • [3] Real-time traffic estimation with incomplete information under urban traffic network
    Liu Liangyun
    Chen Shuyan
    Li Tao
    [J]. 2017 INTERNATIONAL CONFERENCE ON SMART CITY AND SYSTEMS ENGINEERING (ICSCSE 2017), 2017, : 163 - 166
  • [4] Estimation of reliability parameters under incomplete primary information
    Golodnikov, A
    Knopov, P
    Pepelyaev, V
    [J]. THEORY AND DECISION, 2004, 57 (04) : 331 - 344
  • [5] Estimation of Reliability Parameters Under Incomplete Primary Information
    A. N. Golodnikov
    P. S. Knopov
    V. A. Pepelyaev
    [J]. Theory and Decision, 2004, 57 : 331 - 344
  • [6] Parameter Estimation in Credit Models Under Incomplete Information
    Herbertsson, Alexander
    Frey, Ruediger
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (07) : 1409 - 1436
  • [7] Partial Convolutional LSTM for Spatiotemporal Prediction of Incomplete Data
    Son, Hyesook
    Jang, Yun
    [J]. IEEE ACCESS, 2020, 8 : 164762 - 164774
  • [8] Traffic Engineering and Traffic Monitoring in the Case of Incomplete Information
    Satake, Kodai
    Otoshi, Tatsuya
    Ohsita, Yuichi
    Murata, Masayuki
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2019, E102B (01) : 111 - 121
  • [9] Adaptive turning flow estimation based on incomplete detector information for advanced traffic management
    Lan, CJ
    [J]. 2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 830 - 835
  • [10] ESTIMATION OF THE MARKOV SYSTEM PARAMETERS UNDER CONDITIONS OF INCOMPLETE STATISTICAL INFORMATION
    VOINA, OA
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (03): : 68 - 71