Existence of positive solutions of elliptic equations with Hardy term

被引:0
|
作者
Yan, Huimin [1 ]
Xie, Junhui [1 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Enshi 445000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
a priori estimates; Hardy term; positive solutions; LIOUVILLE-TYPE THEOREMS; A-PRIORI BOUNDS; SYSTEMS; FORM;
D O I
10.14232/ejqtde.2024.1.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the existence of positive solutions of the problem: {-Delta u = u(p)/vertical bar x vertical bar(a) + h(x, u, del u), in Omega u = 0, on partial derivative Omega (*) where Omega subset of R-N(N >= 3) is an open bounded smooth domain with boundary partial derivative Omega, and 1 < p < N-a/N-2, 0 < a < 2. Under suitable conditions of h(x, u, del u), we get a priori estimates for the positive solutions of problem (*). By making use of these estimates and topological degree theory, we further obtain some existence results for the positive solutions of problem (*) when 1 < p < N-a/N-2.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条