New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials

被引:4
|
作者
Raza, Nusrat [1 ]
Fadel, Mohammed [2 ]
Du, Wei-Shih [3 ]
机构
[1] Aligarh Muslim Univ, Womens Coll, Math Sect, Aligarh 202002, India
[2] Lahej Univ, Dept Math, Lahej 73560, Yemen
[3] Natl Kaohsiung Normal Univ, Dept Math, Kaohsiung 82444, Taiwan
关键词
(p; q)-calculus; 2-variable; q)-Hermite polynomials; shift operator for polynomials; q)-differential equation summation formulas; integral representations; (P;
D O I
10.3390/axioms13030196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study new features for 2-variable (p,q)-Hermite polynomials, such as the (p,q)-diffusion equation, (p,q)-differential formula and integral representations. In addition, we establish some summation models and their (p,q)-derivatives. Certain parting remarks and nontrivial examples are also provided.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On 2-variable q-Hermite polynomials
    Raza, Nusrat
    Fadel, Mohammed
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    AIMS MATHEMATICS, 2021, 6 (08): : 8705 - 8727
  • [2] ASYMPTOTIC FORMULAS FOR 2-VARIABLE HERMITE-POLYNOMIALS
    DODONOV, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18): : 6191 - 6203
  • [3] 2-VARIABLE GENERALIZED HERMITE MATRIX POLYNOMIALS AND LIE ALGEBRA REPRESENTATION
    Khan, Subuhi
    Raza, Nusrat
    REPORTS ON MATHEMATICAL PHYSICS, 2010, 66 (02) : 159 - 174
  • [4] Properties and Graphical Representations of the 2-Variable Form of the Simsek Polynomials
    Subuhi Khan
    Tabinda Nahid
    Mumtaz Riyasat
    Vietnam Journal of Mathematics, 2022, 50 : 95 - 109
  • [5] Properties and Graphical Representations of the 2-Variable Form of the Simsek Polynomials
    Khan, Subuhi
    Nahid, Tabinda
    Riyasat, Mumtaz
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (01) : 95 - 109
  • [6] DIFFERENTIAL EQUATIONS CONTAINING 2-VARIABLE MIXED-TYPE HERMITE POLYNOMIALS
    Kang, J. Y.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (03): : 687 - 696
  • [7] INTERPOLATION THEOREM FOR 2-VARIABLE POLYNOMIALS
    EASTWOOD, A
    MANUSCRIPTA MATHEMATICA, 1990, 67 (03) : 227 - 249
  • [8] Summation formulae for multi-variable Hermite matrix polynomials
    Yasmin G.
    Afrika Matematika, 2016, 27 (1-2) : 51 - 63
  • [9] Integral representations for multiple hermite and multiple Laguerre polynomials
    Bleher, PM
    Kuijlaars, ABJ
    ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) : 2001 - 2014
  • [10] IMPLICIT SUMMATION FORMULA FOR 2-VARIABLE LAGUERRE-BASED POLY-GENOCCHI POLYNOMIALS
    Khan, Waseem A.
    Khan, Idrees A.
    Ahmad, Moin
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (06): : 856 - 867