Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries

被引:20
|
作者
Li, Ai-Min [1 ]
Borodin, Oleg [2 ]
Pollard, Travis P. [2 ]
Zhang, Weiran [1 ]
Zhang, Nan [1 ]
Tan, Sha [3 ]
Chen, Fu [4 ]
Jayawardana, Chamithri [5 ]
Lucht, Brett L. [5 ]
Hu, Enyuan [3 ]
Yang, Xiao-Qing [3 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] DEVCOM Army Res Lab, Battery Sci Branch, Adelphi, MD USA
[3] Brookhaven Natl Lab, Chem Div, Upton, NY USA
[4] Univ Maryland, Dept Chem & Biochem, College Pk, MD USA
[5] Univ Rhode Island, Dept Chem, Kingston, RI USA
关键词
COULOMBIC EFFICIENCY; HIGH-ENERGY; STABILITY; SOLVATION; INSIGHTS; ANODES;
D O I
10.1038/s41557-024-01497-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li+-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents. Lithium metal batteries are an attractive energy storage technology, but their development relies on the complex interplay between the components' chemical, physical and mechanical properties. Now, selective methylation of dimethoxyethane ether electrolytes is shown to improve electrolyte, electrode and solid-electrolyte interphase stabilities to enable high-performance 4.3 V lithium metal batteries.
引用
收藏
页码:922 / 929
页数:10
相关论文
共 50 条
  • [1] Methylation enables high-voltage ether electrolytes for lithium metal batteries
    Li, Ai-Min
    Wang, Chunsheng
    NATURE CHEMISTRY, 2024, 16 (06) : 852 - 853
  • [2] Non-flammable electrolytes based on a fluorine-free salt for safe and high-voltage lithium metal batteries
    Pham, Thuy Duong
    Bin Faheem, Abdullah
    Kim, Junam
    Kwak, Kyungwon
    Lee, Kyung-Koo
    ELECTROCHIMICA ACTA, 2023, 458
  • [4] Dilute Electrolytes with Fluorine-Free Ether Solvents for 4.5 V Lithium Metal Batteries
    Yang, Yusi
    Wang, Xiaofang
    Zhu, Jiacheng
    Tan, Lulu
    Li, Nan
    Chen, Yifan
    Wang, Linlin
    Liu, Ziqiang
    Yao, Xiayin
    Wang, Xuefeng
    Ji, Xiao
    Zhu, Yujie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024,
  • [5] Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    Jiao, Shuhong
    Ren, Xiaodi
    Cao, Ruiguo
    Engelhard, Mark H.
    Liu, Yuzi
    Hu, Dehong
    Mei, Donghai
    Zheng, Jianming
    Zhao, Wengao
    Li, Qiuyan
    Liu, Ning
    Adams, Brian D.
    Ma, Cheng
    Liu, Jun
    Zhang, Ji-Guang
    Xu, Wu
    NATURE ENERGY, 2018, 3 (09): : 739 - 746
  • [6] Strongly Solvating Ether Electrolytes for High-Voltage Lithium Metal Batteries
    Chen, Shunqiang
    Zhu, Weiduo
    Tan, Lijiang
    Ruan, Digen
    Fan, JiaJia
    Chen, Yunhua
    Meng, Xianhui
    Nian, Qingshun
    Zhao, Xin
    Jiang, Jinyu
    Wang, Zihong
    Jiao, Shuhong
    Wu, Xiaojun
    Ren, Xiaodi
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) : 13155 - 13164
  • [7] Stable cycling of high-voltage lithium metal batteries in ether electrolytes
    Shuhong Jiao
    Xiaodi Ren
    Ruiguo Cao
    Mark H. Engelhard
    Yuzi Liu
    Dehong Hu
    Donghai Mei
    Jianming Zheng
    Wengao Zhao
    Qiuyan Li
    Ning Liu
    Brian D. Adams
    Cheng Ma
    Jun Liu
    Ji-Guang Zhang
    Wu Xu
    Nature Energy, 2018, 3 : 739 - 746
  • [8] Fluorine-Free Electrolytes for Lithium and Sodium Batteries
    Hernandez, Guiomar
    Mogensen, Ronnie
    Younesi, Reza
    Mindemark, Jonas
    BATTERIES & SUPERCAPS, 2022, 5 (06)
  • [9] Fluorine-Free Electrolytes for Lithium and Sodium Batteries
    Hernández, Guiomar
    Mogensen, Ronnie
    Younesi, Reza
    Mindemark, Jonas
    Batteries and Supercaps, 2022, 5 (06):
  • [10] High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries
    Ren, Xiaodi
    Zou, Lianfeng
    Jiao, Shuhong
    Mei, Donghai
    Engelhard, Mark H.
    Li, Qiuyan
    Lee, Hongkyung
    Niu, Chaojiang
    Adams, Brian D.
    Wang, Chongmin
    Liu, Jun
    Zhang, Ji-Guang
    Xu, Wu
    ACS ENERGY LETTERS, 2019, 4 (04) : 896 - +