Gaussian Mixture Variational-Based Transformer Domain Adaptation Fault Diagnosis Method and Its Application in Bearing Fault Diagnosis

被引:13
|
作者
An, Yiyao [1 ]
Zhang, Ke [1 ]
Chai, Yi [1 ]
Zhu, Zhiqin [1 ]
Liu, Qie [1 ]
机构
[1] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
关键词
Fault diagnosis; Gaussian mixture variational; unsupervised domain adaptation (UDA); variable working condition;
D O I
10.1109/TII.2023.3268750
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation is widely used for fault diagnosis under variable working conditions. However, loss oscillation and slow convergence, which are caused by the dynamically varying alignment of targets during domain adaptation, are ignored. Therefore, in this article, a Gaussian mixture variational-based transformer domain adaptation (GMVTDA) fault diagnosis method is proposed. A feature extractor based on transformer layers is designed to capture long-term dependence information and local features. Subsequently, a domain alignment term is proposed to project the features learned from both working conditions into the common assistance distribution and make them follow the same distribution after the alignment process. In addition, considering that fault diagnosis is a multiclassification process, a Gaussian mixture is utilized to build the common assistance distribution. Ultimately, the proposed GMVTDA is applied to bearing fault diagnosis under variable working conditions, and the experimental results prove its effectiveness.
引用
收藏
页码:615 / 625
页数:11
相关论文
共 50 条
  • [1] Unsupervised Method Based on Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Li, Yao
    Yang, Rui
    Wang, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [2] Machine fault diagnosis based on Gaussian mixture model and its application
    Gang Yu
    Changning Li
    Jun Sun
    The International Journal of Advanced Manufacturing Technology, 2010, 48 : 205 - 212
  • [3] Machine fault diagnosis based on Gaussian mixture model and its application
    Yu, Gang
    Li, Changning
    Sun, Jun
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 48 (1-4): : 205 - 212
  • [4] Bearing Fault Diagnosis Based on Multilayer Domain Adaptation
    Yang, Bingru
    Li, Qi
    Chen, Liang
    Shen, Changqing
    SHOCK AND VIBRATION, 2020, 2020
  • [5] Bearing fault diagnosis based on deep dynamic domain adaptation
    Wang J.
    Lei W.
    Liu H.
    Wei L.
    Han D.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (14): : 245 - 250
  • [6] Bearing fault diagnosis model based on class domain adaptation
    Zhang Y.
    Zhang C.
    Lu B.
    Ding C.
    Li P.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (24): : 117 - 126
  • [7] Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis
    Zhou, Kaibo
    Cao, Guannan
    Zhang, Kaifeng
    Liu, Jie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [8] A Fault Diagnosis Method Based on ANFIS and Bearing Fault Diagnosis
    Zhang, Junhong
    Ma, Wenpeng
    Ma, Liang
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1273 - 1277
  • [9] Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing
    Tang G.-J.
    Wang X.-L.
    Wang, Xiao-Long (wangxiaolong0312@126.com), 1600, Nanjing University of Aeronautics an Astronautics (29): : 638 - 648
  • [10] A novel bearing fault diagnosis method based joint attention adversarial domain adaptation
    Chen, Pengfei
    Zhao, Rongzhen
    He, Tianjing
    Wei, Kongyuan
    Yuan, Jianhui
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 237