High-quality ZnO anti-reflective coatings for CdSe crystal in the infrared wavelength

被引:1
|
作者
Huang, Jian Yong [1 ,2 ,3 ,4 ]
Fei, Guang Tao [1 ,2 ]
Xu, Shao Hui [1 ,2 ]
Liu, Yu Lei [3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Mat Phys, Inst Solid State Phys, Hefei Inst Phys Sci, POB 1129, Hefei 230031, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Anhui Key Lab Nanomat & Nanotechnol, POB 1129, Hefei 230031, Peoples R China
[3] Hefei Lucky Sci & Technol Ind Co Ltd, Hefei 230041, Anhui, Peoples R China
[4] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Anti-reflective coatings; ZnO nanoparticles; Infrared window; CdSe crystal;
D O I
10.1016/j.infrared.2023.104963
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The anti-reflective coating of infrared window materials plays an important role in infrared devices. In this paper, pure ZnO nanoparticles dispersion liquid was obtained by purifying and redispersing ZnO nanoparticles of about 4 nm prepared by the sol-gel method. High-performance ZnO coatings were prepared on CdSe crystals by the dip-coating method. Changing the thickness of the ZnO coating can change the position of the optimal anti-reflection. In the wavelength range of 1280-3000 nm, the lowest reflectance can reach 0.20 %, and the average reflectance is reduced from 26.36 % to 6.02 %. In the wavelength range of 3000-5000 nm, the lowest reflectance can reach 0.22 %, and the average reflectance is reduced from 26.91 % to 2.23 %. In the wavelength range of 8000-10,000 nm, the lowest reflectance can reach 0.20 %, and the average reflectance is reduced from 28.24 % to 1.28 %. Especially in the wavelength ranges of 3000-5000 and 8000-10,000 nm, the anti-reflection is significant in the whole band. In addition, the coating has excellent high-temperature stability and mechanical properties. This work is of great significance for preparing infrared anti-reflection coatings by chemical method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Anti-reflective coatings
    Lamb, Jim
    European Semiconductor, 1995, 17 (02):
  • [2] UV-blocking ZnO nanostructure anti-reflective coatings
    Du, Qing Guo
    Alagappan, G.
    Dai, Haitao
    Demir, H. V.
    Yu, H. Y.
    Sun, Xiao Wei
    Kam, Chan Hin
    OPTICS COMMUNICATIONS, 2012, 285 (13-14) : 3238 - 3241
  • [3] Anti-reflective and superamphiphilic coatings on polycarbonate
    Valentim, P. T.
    Retolaza, A.
    Llobet, J.
    Araujo, C.
    Cruz, S.
    Machado, C.
    Pontes, A. J., V
    Santos, H.
    Sousa, P. C.
    OPTICAL MATERIALS, 2022, 133
  • [5] Laser conditioning of high-reflective and anti-reflective coatings in vacuum environments
    Ling, Xiulan
    Zhao, Yuanan
    Li, Dawei
    Shao, Jianda
    Fan, Zhengxiu
    OPTICS COMMUNICATIONS, 2010, 283 (13) : 2728 - 2731
  • [6] Laser conditioning of high-reflective and anti-reflective coatings at 1064nm
    Zhao, YN
    Shao, JD
    He, HB
    Fan, ZX
    LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2005, 2005, 5991
  • [7] Anti-reflective optical coatings incorporating nanoparticles
    Krogman, KC
    Druffel, T
    Sunkara, MK
    NANOTECHNOLOGY, 2005, 16 (07) : S338 - S343
  • [8] Anti-reflective polymer coatings in optical microlithography
    De, B
    Malik, S
    Dilocker, S
    Spaziano, G
    Biafore, J
    Bowden, M
    JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 2002, 39 (1-2): : 1 - 16
  • [9] Optimization of anti-reflective coatings for lithography applications
    Bauer, J
    Fursenko, O
    Virko, S
    Kuck, B
    Grabolla, T
    Melnik, V
    Mehr, W
    EMLC 2005: 21st European Mask and Lithography Conference, 2005, 5835 : 263 - 272
  • [10] Wet developable bottom anti-reflective coatings
    Hatanaka, T
    Kimura, S
    Enomoto, T
    Nakajima, Y
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXI, PTS 1 AND 2, 2004, 5376 : 655 - 663