Explainability analysis in predictive models based on machine learning techniques on the risk of hospital readmissions

被引:1
|
作者
Bedoya, Juan Camilo Lopera [1 ]
Castro, Jose Lisandro Aguilar [1 ,2 ,3 ]
机构
[1] Univ EAFIT, GIDITIC, Medellin, Colombia
[2] Univ Los Andes, CEMISID, Merida, Venezuela
[3] IMDEA Networks Inst, Madrid, Spain
关键词
Explainability analysis; Prediction models; Machine learning; Hospital readmission; Health decision-making systems;
D O I
10.1007/s12553-023-00794-8
中图分类号
R-058 [];
学科分类号
摘要
PurposeAnalyzing the risk of re-hospitalization of patients with chronic diseases allows the healthcare institutions can deliver accurate preventive care to reduce hospital admissions, and the planning of the medical spaces and resources. Thus, the research question is: Is it possible to use artificial intelligence to study the risk of re-hospitalization of patients?MethodsThis article presents several models to predict when a patient can be hospitalized again, after its discharge. In addition, an explainability analysis is carried out with the predictive models to extract information to determine the degree of importance of the predictors/descriptors. Particularly, this article makes a comparative analysis of different explainability techniques in the study context.ResultsThe best model is a classifier based on decision trees with an F1-Score of 83% followed by LGMB with an F1-Score of 67%. For these models, Shapley values were calculated as a method of explainability. Concerning the quality of the explainability of the predictive models, the stability metric was used. According to this metric, more variability is evidenced in the explanations of the decision trees, where only 4 attributes are very stable (21%) and 1 attribute is unstable. With respect to the LGBM-based model, there are 12 stable attributes (63%) and no unstable attributes. Thus, in terms of explainability, the LGBM-based model is better.ConclusionsAccording to the results of the explanations generated by the best predictive models, LGBM-based predictive model presents more stable variables. Thus, it generates greater confidence in the explanations it provides.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 50 条
  • [1] Explainability analysis in predictive models based on machine learning techniques on the risk of hospital readmissions
    Juan Camilo Lopera Bedoya
    Jose Lisandro Aguilar Castro
    Health and Technology, 2024, 14 : 93 - 108
  • [2] Analysis of Machine Learning Techniques for Heart Failure Readmissions
    Mortazavi, Bobak J.
    Downing, Nicholas S.
    Bucholz, Emily M.
    Dharmarajan, Kumar
    Manhapra, Ajay
    Li, Shu-Xia
    Negahban, Sahand N.
    Krumholz, Harlan M.
    CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2016, 9 (06): : 629 - +
  • [3] Machine Learning-based Risk of Hospital Readmissions: Predicting Acute Readmissions within 30 Days of Discharge
    Baig, Mirza Mansoor
    Hua, Ning
    Zhang, Edmond
    Robinson, Reece
    Armstrong, Delwyn
    Whittaker, Robyn
    Robinson, Tom
    Mirza, Farhaan
    Ullah, Ehsan
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2178 - 2181
  • [4] The efficacy of machine learning models in lung cancer risk prediction with explainability
    Pathan, Refat Khan
    Shorna, Israt Jahan
    Hossain, Md. Sayem
    Khandaker, Mayeen Uddin
    Almohammed, Huda I.
    Hamd, Zuhal Y.
    PLOS ONE, 2024, 19 (06):
  • [5] Forecasting Hospital Readmissions with Machine Learning
    Michailidis, Panagiotis
    Dimitriadou, Athanasia
    Papadimitriou, Theophilos
    Gogas, Periklis
    HEALTHCARE, 2022, 10 (06)
  • [6] Explainability of Machine Learning Models for Bankruptcy Prediction
    Park, Min Sue
    Son, Hwijae
    Hyun, Chongseok
    Hwang, Hyung Ju
    IEEE ACCESS, 2021, 9 : 124887 - 124899
  • [7] Adversarial Robustness and Explainability of Machine Learning Models
    Gafur, Jamil
    Goddard, Steve
    Lai, William K. M.
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2024, PEARC 2024, 2024,
  • [8] ESG ratings explainability through machine learning techniques
    Del Vitto, Alessandro
    Marazzina, Daniele
    Stocco, Davide
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [9] Predictive models for diabetes mellitus using machine learning techniques
    Lai, Hang
    Huang, Huaxiong
    Keshavjee, Karim
    Guergachi, Aziz
    Gao, Xin
    BMC ENDOCRINE DISORDERS, 2019, 19 (01)
  • [10] Predictive models for charitable giving using machine learning techniques
    Farrokhvar, Leily
    Ansari, Azadeh
    Kamali, Behrooz
    PLOS ONE, 2018, 13 (10):