Multiphilic-Zn group "adhesion" strategy toward highly stable and reversible zinc anodes

被引:11
|
作者
Ma, Yandong [1 ,2 ]
Ma, Qianru [1 ,2 ,4 ]
Liu, Yonghang [1 ,2 ]
Tan, Yangyang [1 ,2 ]
Zhang, Yi [1 ,2 ]
Han, Ning [4 ]
Bao, Shujuan [1 ,2 ]
Song, Jie [3 ]
Xu, Maowen [1 ,2 ]
机构
[1] Southwest Univ, Sch Mat & Energy, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Adv Mat & Technol Clean Energies, Chongqing 400715, Peoples R China
[3] Shandong Zero One Four Adv Mat Co Ltd, Zibo, Peoples R China
[4] Katholieke Univ Leuven, Dept Mat Engn, Kasteelpk Arenberg 44, B-3001 Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Electrolyte additive; Zinc dendrites; Low-temperature performance; DESIGN;
D O I
10.1016/j.ensm.2023.103032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of aqueous zinc ion batteries (AZIBs) has been bottlenecked by the dendritic problems and complex side reactions of zinc anodes, although it shows great potential for application. Herein, we propose a strategy for reconstructing the electric double layer on the Zn surface by chemisorption of sodium hyaluronate (SH) to assist in regulating the charge distribution on the zinc surface and limiting the selective diffusion of zinc ions. Experiments and theoretical calculations confirm that the adsorbed functional groups allow the water molecules originally free on the surface of the zinc anode to be squeezed out and form a water-poor state, thus establishing the zinc anode-SH molecular interface and leading to an electrical double-layer reconstruction; In addition, the strong interaction between Zn and SH induces the directional deposition of Zn towards the (002) crystal plane, thus constituting a homogeneous and compact deposition interface. Due to the powerful dynamic regulation of SH, the Zn anode exhibits an impressive runtime of 6300 h with stable and reversible zinc deposition/stripping efficiency and low-temperature performance. This strategy of inducing directional Zn deposition via organic functional groups offers a new perspective for future Zn anode and safeaqueous cell design.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering
    Ang Li
    Jiayi Li
    Yurong He
    Maochun Wu
    Journal of Energy Chemistry, 2023, 83 (08) : 209 - 228
  • [2] Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering
    Li, Ang
    Li, Jiayi
    He, Yurong
    Wu, Maochun
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 209 - 228
  • [3] Hydrophobic Interface Engineering for Highly Reversible and Stable Zn Anodes
    Tian, Han
    Yang, Jia-Ning
    Li, Shang-Qi
    Wang, Kai-Xue
    Chen, Jie-Sheng
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
  • [4] Highly stable and reversible Zn anodes enabled by an electrolyte additive of sucrose
    Song, Ming
    Li, Shan
    Zhu, Yi
    Wan, Hongri
    Xu, Xuena
    Li, Lu
    Sun, Limei
    Tian, Lin
    Xu, Yan
    DALTON TRANSACTIONS, 2024, 53 (06) : 2714 - 2721
  • [5] A Nanocluster Colloidal Electrolyte Enables Highly Stable and Reversible Zinc Anodes
    Peng, Jiahui
    Sun, Huanhuan
    Wen, Mengyao
    Chen, Yuming
    Luo, Zhixuan
    Huyan, Yu
    Xue, Yumeng
    Wang, Jian-Gan
    NANO LETTERS, 2024, 24 (47) : 14941 - 14949
  • [7] Highly reversible and stable Zn metal anodes realized using a trifluoroacetamide electrolyte additive
    Wu, Miaomiao
    Wang, Xingchao
    Zhang, Fei
    Xiang, Qian
    Li, Yan
    Guo, Jixi
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (02) : 619 - 629
  • [8] Bifunctional Zn 2+-solvation structure electrolyte for highly reversible zinc anodes
    Wang, Shuai
    Wang, Zhe
    He, Bing
    Yuan, Shixing
    Wang, Zhixun
    Liu, Yanting
    Xin, Jiwu
    Zhou, Xuhui
    Fan, Hong Jin
    Wei, Lei
    NANO ENERGY, 2024, 126
  • [9] Latent Solvent Induced Reliable Interfacial Chemistry Toward Highly Reversible Zn Anodes
    Su, Long
    Lu, Fei
    Dong, Jingjing
    Dou, Xinwei
    Zheng, Liqiang
    Ouyang, Chuying
    Gao, Xinpei
    ADVANCED ENERGY MATERIALS, 2024, 14 (27)
  • [10] In Situ Spontaneous Construction of Zinc Phosphate Coating Layer Toward Highly Reversible Zinc Metal Anodes
    Xia, Shu
    Luo, Qiuyang
    Liu, Junnan
    Yang, Xingfu
    Lei, Jie
    Shao, Jiaojing
    Tang, Xiaoning
    SMALL, 2024, 20 (29)