Numerical Solution of Inverse Problems in Filtration of a Viscoplastic Fluid

被引:1
|
作者
Khairullin, M. Kh. [1 ]
Badertdinova, E. R. [2 ]
Khairullin, R. M. [2 ]
机构
[1] Inst Mech & Mech Engn Separate Struct Subdiv Fed, 2-3 Lobachevskii Str, Kazan 420111, Russia
[2] Kazan Natl Res Technol Univ, 68 K Marx Str, Kazan 420015, Russia
关键词
Bingham non-Newtonian fluid; limiting pressure gradient; vertical well; regularization; hydrodynamic studies; thermohydrodynamic studies; numerical simulation; POWER-LAW FLUIDS; FLOW;
D O I
10.1007/s10891-023-02771-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
According to the data obtained in laboratory rheological studies, oils from some fields are the Bingham non-Newtonian fluids. In this work, inverse problems are solved numerically to determine the filtration parameters of the reservoir. The curves showing the change in pressure and temperature are used as the initial information. The results of the interpretation of real curves obtained from a model with a limiting gradient and from a model with a piecewise linear filtration law are compared.
引用
收藏
页码:1066 / 1071
页数:6
相关论文
共 50 条
  • [1] Numerical Solution of Inverse Problems in Filtration of a Viscoplastic Fluid
    M. Kh. Khairullin
    E. R. Badertdinova
    R. M. Khairullin
    Journal of Engineering Physics and Thermophysics, 2023, 96 : 1066 - 1071
  • [2] Numerical solution of an inverse filtration problem
    Vabishchevich, P. N.
    Vasil'ev, V. I.
    Vasil'eva, M. V.
    Nikiforov, D. Ya.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (06) : 777 - 786
  • [3] Numerical solution of the coefficient inverse problems on nonstationary filtration to a well intersected by a hydraulic fracture
    Badertdinova, E. R.
    Salim'yanov, I. T.
    Khairullin, M. Kh
    Shamsiev, M. N.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2012, 53 (03) : 379 - 383
  • [4] Numerical solution of the coefficient inverse problems on nonstationary filtration to a well intersected by a hydraulic fracture
    E. R. Badertdinova
    I. T. Salim’yanov
    M. Kh. Khairullin
    M. N. Shamsiev
    Journal of Applied Mechanics and Technical Physics, 2012, 53 : 379 - 383
  • [5] On Numerical Solution of Shape Inverse Problems
    L. Jackowska-Strumillo
    J. Sokolowski
    A. Żochowski
    A. Henrot
    Computational Optimization and Applications, 2002, 23 : 231 - 255
  • [6] On numerical solution of shape inverse problems
    Jackowska-Strumillo, L
    Sokolowski, J
    Zochowski, A
    Henrot, A
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) : 231 - 255
  • [7] Numerical solution for various inverse problems
    Weber, R
    Hureau, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 577 - 591
  • [8] Numerical solution of inverse problems in hydrodynamics
    Tereshko, D. A.
    ALL-RUSSIAN CONFERENCE WITH INTERNATIONAL PARTICIPATION MODERN PROBLEMS OF CONTINUUM MECHANICS AND EXPLOSION PHYSICS DEDICATED TO THE 60TH ANNIVERSARY OF LAVRENTYEV INSTITUTE OF HYDRODYNAMICS SB RAS, 2017, 894
  • [9] Algorithm for the Numerical Solution of the Inverse Problem of Filtration Theory
    Kenzhebayev, T. S.
    Mukhambetzhanov, Saltanbek Talapedenovich
    2016 INTERNATIONAL CONFERENCE ON APPLIED MECHANICS, ELECTRONICS AND MECHATRONICS ENGINEERING (AMEME 2016), 2016, : 13 - 17
  • [10] NUMERICAL-SOLUTION OF VISCOPLASTIC FLOW PROBLEMS BY AUGMENTED LAGRANGIANS
    LETALLEC, P
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (02) : 185 - 219