Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems

被引:54
|
作者
Abdel-Basset, Mohamed [1 ]
El-Shahat, Doaa [1 ]
Jameel, Mohammed [2 ]
Abouhawwash, Mohamed [3 ,4 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig 44519, Ash Sharqia Gov, Egypt
[2] Sanaa Univ, Fac Sci, Dept Math, 13509, Sanaa, Yemen
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[4] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
关键词
Swarm intelligence; Exponential distribution optimizer algorithm; Memoryless property; Stochastic; Engineering design problem; PARTICLE SWARM OPTIMIZATION; COOPERATIVE COEVOLUTIONARY ALGORITHM; META-HEURISTIC OPTIMIZATION; GENETIC ALGORITHM; DIFFERENTIAL EVOLUTION; COMPETITIVE ALGORITHM; DESIGN; HYBRID; COLONY; SYSTEM;
D O I
10.1007/s10462-023-10403-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Numerous optimization problems can be addressed using metaheuristics instead of deterministic and heuristic approaches. This study proposes a novel population-based metaheuristic algorithm called the Exponential Distribution Optimizer (EDO). The main inspiration for EDO comes from mathematics based on the exponential probability distribution model. At the outset, we initialize a population of random solutions representing multiple exponential distribution models. The positions in each solution represent the exponential random variables. The proposed algorithm includes two methodologies for exploitation and exploration strategies. For the exploitation stage, the algorithm utilizes three main concepts, memoryless property, guiding solution and the exponential variance among the exponential random variables to update the current solutions. To simulate the memoryless property, we assume that the original population contains only the winners that obtain good fitness. We construct another matrix known as memoryless to retain the newly generated solutions regardless of their fitness compared to their corresponding winners in the original population. As a result, the memoryless matrix stores two types of solutions: winners and losers. According to the memoryless property, we disregard and do not memorize the previous history of these solutions because past failures are independent and have no influence on the future. The losers can thus contribute to updating the new solutions next time. We select two solutions from the original population derived from the exponential distributions to update the new solution throughout the exploration phase. Furthermore, EDO is tested against classical test functions in addition to the Congress on Evolutionary Computation (CEC) 2014, CEC 2017, CEC 2020 and CEC 2022 benchmarks, as well as six engineering design problems. EDO is compared with the winners of CEC 2014, CEC 2017 and CEC 2020, which are L-SHADE, LSHADE-cnEpSin and AGSK, respectively. EDO reveals exciting results and can be a robust tool for CEC competitions. Statistical analysis demonstrates the superiority of the proposed EDO at a 95% confidence interval.
引用
收藏
页码:9329 / 9400
页数:72
相关论文
共 50 条
  • [1] Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems
    Mohamed Abdel-Basset
    Doaa El-Shahat
    Mohammed Jameel
    Mohamed Abouhawwash
    [J]. Artificial Intelligence Review, 2023, 56 : 9329 - 9400
  • [2] Multi-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems
    Kalita, Kanak
    Ramesh, Janjhyam Venkata Naga
    Cepova, Lenka
    Pandya, Sundaram B.
    Jangir, Pradeep
    Abualigah, Laith
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] Multi-objective exponential distribution optimizer (MOEDO): a novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems
    Kanak Kalita
    Janjhyam Venkata Naga Ramesh
    Lenka Cepova
    Sundaram B. Pandya
    Pradeep Jangir
    Laith Abualigah
    [J]. Scientific Reports, 14
  • [4] Golden Sine Algorithm: A Novel Math-Inspired Algorithm
    Tanyildizi, Erkan
    Demir, Gokhan
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2017, 17 (02) : 71 - 78
  • [5] Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Jameel, Mohammed
    Abouhawwash, Mohamed
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [6] An efficient improved exponential distribution optimizer: application to the global, engineering and combinatorial optimization problems
    Houssein, Essam H.
    Saeed, Mahmoud Khalaf
    Hu, Gang
    Al-Sayed, Mustafa M.
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (07): : 9345 - 9380
  • [7] Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization
    Zamani, Hoda
    Nadimi-Shahraki, Mohammad H.
    Gandomi, Amir H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [8] Human memory optimization algorithm: A memory-inspired optimizer for global optimization problems
    Zhu, Donglin
    Wang, Siwei
    Zhou, Changjun
    Yan, Shaoqiang
    Xue, Jiankai
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [9] The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
    Shadravan, S.
    Naji, H. R.
    Bardsiri, V. K.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 80 : 20 - 34
  • [10] Giant Trevally Optimizer (GTO): A Novel Metaheuristic Algorithm for Global Optimization and Challenging Engineering Problems
    Sadeeq, Haval Tariq
    Abdulazeez, Adnan Mohsin
    [J]. IEEE ACCESS, 2022, 10 : 121615 - 121640