Weak measurement of the Goos-Hänchen shift for a Hermite-Gaussian laser beam

被引:1
|
作者
Mandal, Soumen [1 ]
Das, Akash [1 ,2 ]
Pradhan, Manik [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, Dept Chem & Biol Sci, Salt Lake,JD Block,Sect 3, Kolkata 700106, India
[2] Univ Rochester, Inst Opt, 480 Intercampus Dr, Rochester, NY 14627 USA
关键词
Hermite-Gaussian mode; Goos-Hanchen shift; weak value amplification; spatial light modulator; beam shaping; IMBERT-FEDOROV SHIFTS; GOOS-HANCHEN SHIFTS; SPIN; COMPONENT; MODES;
D O I
10.1088/2040-8986/ad2ca6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on an experimental investigation of the Goos-Hanchen (GH) optical beam shift in the vicinity of the critical angle of incidence at an air-glass interface using a weak value amplification (WVA) technique for two mutually orthogonal first order Hermite-Gaussian (HG) modes (HG10 and HG01) of a light beam at 633 nm generated by a phase-only reflective spatial light modulator. We have developed a mathematical approach to visualize the beam shaping due to the WVA scheme of beam shifts for the HG modes. The study reveals the angle of incidence dependency of the GH shift in the total internal reflection condition. For both modes, a detailed study of the horizontal and transverse beam shift values with varied post-selection angles is also reported. In addition, a comparison of the beam shift values for both of the selected modes with the fundamental mode (HG00) has been demonstrated. We found a significant enhancement (about two to three times) in the beam shifts for the first order HG10 and HG01 modes compared to the fundamental mode (HG00). Our results clearly demonstrate the advantages of the HG modes of the light beam-exploiting WVA technique and thus may contribute significantly to this field and open up important applications in photonic manipulation and future technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Entangled-Beam Reflectometry and Goos-Hänchen Shift
    Le Thien, Q.
    Pynn, R.
    Ortiz, G.
    Physical Review Letters, 2025, 134 (09)
  • [2] The Goos-Hänchen and focal shift of a diverging beam at a medium interface
    Qu M.
    Huang Z.-X.
    Lu G.-Z.
    Li B.
    Liu Y.
    Yuhang Xuebao/Journal of Astronautics, 2010, 31 (01): : 287 - 291
  • [3] Goos-H?nchen shift at a temporal boundary
    Ponomarenko, Sergey A.
    Zhang, Junchi
    Agrawal, Govind P.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [4] Goos-Hänchen shift in bilayer graphene
    M. Cheng
    The European Physical Journal B, 2012, 85
  • [5] Goos–Hänchen shift for higher-order Hermite–Gaussian beams
    DHEERAJ GOLLA
    S DUTTA GUPTA
    Pramana, 2011, 76 : 603 - 612
  • [6] Controlling the Goos-Hänchen shift via quantum interference
    Mojtaba Rezaei
    Mostafa Sahrai
    The European Physical Journal D, 2014, 68
  • [7] Observation of the Goos-Hänchen shift in monolayer WSe2 for an arbitrary linearly polarized incident light beam using weak measurement
    Mandal, Soumen
    Sett, Anuradha
    Dey, Dinesh Chandra
    Das, Akash
    Pradhan, Manik
    Journal of the Optical Society of America B: Optical Physics, 2024, 41 (12) : 2714 - 2720
  • [8] Spatial Goos-Hänchen shift in photonic graphene SPATIAL GOOS-HÄNCHEN SHIFT in PHOTONIC GRAPHENE SIMON GROSCHE, ALEXANDER SZAMEIT, and MARCO ORNIGOTTI
    Grosche S.
    Szameit A.
    Ornigotti M.
    2016, American Physical Society (94)
  • [9] Phase Control of the Giant Resonant Goos-Hänchen Shift
    A. A. Zharov
    N. A. Zharova
    A. A. Zharov
    JETP Letters, 2020, 112 : 65 - 70
  • [10] Observation of a Giant Goos-Hänchen Shift for Matter Waves
    McKay, S.
    De Haan, V.O.
    Leiner, J.
    Parnell, S.R.
    Dalgliesh, R.M.
    Boeni, P.
    Bannenberg, L.J.
    Le Thien, Q.
    Baxter, D.V.
    Ortiz, G.
    Pynn, R.
    Physical Review Letters, 2025, 134 (09)