Bayesian Physics-Informed Neural Networks for the Subsurface Tomography Based on the Eikonal Equation

被引:10
|
作者
Gou, Rongxi [1 ]
Zhang, Yijie [1 ]
Zhu, Xueyu [2 ]
Gao, Jinghuai [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Shaanxi, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52246 USA
基金
中国国家自然科学基金;
关键词
Bayesian physics-informed neural networks (BPINNs); eikonal equation; Stein variational gradient descent (SVGD); tomography; variational inference (VI); VARIATIONAL INFERENCE; INVERSION;
D O I
10.1109/TGRS.2023.3286438
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The high cost of acquiring a sufficient amount of seismic data for training has limited the use of machine learning in seismic tomography. In addition, the inversion uncertainty due to the noisy data and data scarcity is less discussed in the conventional seismic tomography literature. To mitigate the uncertainty effects and quantify their impacts in the prediction, the so-called Bayesian physics-informed neural networks (BPINNs) based on the eikonal equation are adopted to infer the velocity field and reconstruct the travel-time field. In BPINNs, two inference algorithms, including Stein variational gradient descent (SVGD) and Gaussian variational inference (VI), are investigated for the inference task. The numerical results of several benchmark problems demonstrate that the velocity field can be estimated accurately and the travel time can be well approximated with reasonable uncertainty estimates by BPINNs. This suggests that the inferred velocity model provided by BPINNs may serve as a valid initial model for seismic inversion and migration.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Neural Eikonal solver: Improving accuracy of physics-informed neural networks for solving eikonal equation in case of caustics
    Grubas, Serafim
    Duchkov, Anton
    Loginov, Georgy
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [2] PINNeik: Eikonal solution using physics-informed neural networks
    bin Waheed, Umair
    Haghighat, Ehsan
    Alkhalifah, Tariq
    Song, Chao
    Hao, Qi
    COMPUTERS & GEOSCIENCES, 2021, 155
  • [3] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [4] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [5] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [6] Boussinesq equation solved by the physics-informed neural networks
    Gao, Ruozhou
    Hu, Wei
    Fei, Jinxi
    Wu, Hongyu
    NONLINEAR DYNAMICS, 2023, 111 (16) : 15279 - 15291
  • [7] Solving the Teukolsky equation with physics-informed neural networks
    Luna, Raimon
    Bustillo, Juan Calderon
    Martinez, Juan Jose Seoane
    Torres-Forne, Alejandro
    Font, Jose A.
    PHYSICAL REVIEW D, 2023, 107 (06)
  • [8] Surrogate modeling for Bayesian inverse problems based on physics-informed neural networks
    Li, Yongchao
    Wang, Yanyan
    Yan, Liang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [9] Randomized physics-informed neural networks for Bayesian data assimilation
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [10] Distributed Bayesian Parameter Inference for Physics-Informed Neural Networks
    Bai, He
    Bhar, Kinjal
    George, Jemin
    Busart, Carl
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2911 - 2916