Deep Learning-Based DAS to Geophone Data Transformation

被引:1
|
作者
Fu, Lei [1 ]
Li, Weichang [1 ]
Ma, Yong [1 ]
机构
[1] Aramco Serv Co, Aramco Res Ctr, Houston, TX 77084 USA
关键词
Seismic measurements; Logic gates; Sensors; Optical fibers; Particle measurements; Optical fiber cables; Atmospheric measurements; Deep learning (DL); distributed acoustic sensing (DAS); fiber optic sensing; geophone;
D O I
10.1109/JSEN.2023.3271207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Seismic data are the primary way to study the subsurface structure and properties. A conventional seismic sensor like geophone or accelerometer measures particle velocity or acceleration at a local point only, while distributed acoustic sensing (DAS) measures dynamic strain along the fiber optic cable at densely spaced sample points, where strain rate is obtained over certain gauge length interval. Therefore, DAS measures subsurface properties with high sampling resolution and large coverage. When an optical fiber is installed in a well, DAS can provide continuous, dense downhole recording. However, currently, most of the seismic processing, imaging, and inversion techniques are developed for geophone data. These well-established techniques can be readily and properly utilized if DAS data are transformed into geophone measurements, such as particle velocity. In this study, we present a recurrent neural network (RNN) framework to perform this transformation. This effectiveness of the deep learning-based mapping is then demonstrated with a field measurement data, showing that DAS data can be transformed into particle velocity accurately and robustly using the proposed deep-learning approach.
引用
收藏
页码:12853 / 12860
页数:8
相关论文
共 50 条
  • [1] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [2] A Comprehensive Review on Deep Learning-Based Data Fusion
    Hussain, Mazhar
    O'Nils, Mattias
    Lundgren, Jan
    Mousavirad, Seyed Jalaleddin
    IEEE Access, 2024, 12 : 180093 - 180124
  • [3] Deep learning-based denoising for PennPET Explorer data
    Wu, Jing
    Daube-Witherspoon, Margaret
    Liu, Hui
    Lu, Wenzhuo
    Onofrey, John
    Karp, Joel
    Liu, Chi
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [4] Deep learning-based enhancement of epigenomics data with AtacWorks
    Lal, Avantika
    Chiang, Zachary D.
    Yakovenko, Nikolai
    Duarte, Fabiana M.
    Israeli, Johnny
    Buenrostro, Jason D.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Deep learning-based data analytics for safety in construction
    Liu, Jiajing
    Luo, Hanbin
    Liu, Henry
    AUTOMATION IN CONSTRUCTION, 2022, 140
  • [6] Deep Learning-based Localization in Limited Data Regimes
    Mitchell, Frost
    Baset, Aniqua
    Patwari, Neal
    Kasera, Sneha
    Bhaskara, Aditya
    PROCEEDINGS OF THE 2022 ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNIG (WISEML '22), 2022, : 15 - 20
  • [7] Deep learning-based enhancement of epigenomics data with AtacWorks
    Avantika Lal
    Zachary D. Chiang
    Nikolai Yakovenko
    Fabiana M. Duarte
    Johnny Israeli
    Jason D. Buenrostro
    Nature Communications, 12
  • [8] Deep Learning-Based Classification of Massive Electrocardiography Data
    Zhou, Lin
    Yan, Yan
    Qin, Xingbin
    Yuan, Chan
    Que, Dashun
    Wang, Lei
    PROCEEDINGS OF 2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC 2016), 2016, : 780 - 785
  • [9] Omics Data and Data Representations for Deep Learning-Based Predictive Modeling
    Tsimenidis, Stefanos
    Vrochidou, Eleni
    Papakostas, George A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [10] Deep Learning-based Transformation Matrix Estimation for Bidirectional Interframe Prediction
    Jimbo, Satoru
    Wang, Ji
    Yashima, Yoshiyuki
    2018 IEEE 7TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE 2018), 2018, : 726 - 730