Micromechanical Modeling of Strain-Hardening Behavior in Dual-Phase Steels

被引:0
|
作者
Rezayat, Mohammad [1 ]
Rahron, Reyhaneh [1 ]
Allafi, Afagh [1 ]
机构
[1] Sahand Univ Technol, Fac Mat Engn, Tabriz 513351996, Iran
关键词
dual-phase steels; flow stress; micromechanical modeling; strain-hardening rate; DISLOCATION DENSITY; PLASTIC BEHAVIOR; MARTENSITE-TRANSFORMATION; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; VOLUME FRACTION; DP STEELS; FERRITE; MICROSTRUCTURE; MATRIX;
D O I
10.1002/srin.202300141
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A mathematical model is developed to consider the impact of microstructural parameters, including the volume fraction and the average particle size of martensite, on the flow stress and strain-hardening behavior of dual-phase microstructure. In this regard, the micromechanical approach is applied for partitioning the stress and strain in ferrite and martensite. Martensite carbon content and geometrically necessary dislocations, generated from austenite-to-martensite transformation, and strain accommodation at the ferrite-martensite interface, are involved to modify the partitioned stress of martensite and ferrite, respectively. Having partitioned stress in each phase, the global stress is estimated as the function of steel chemical composition, ferrite grain size, martensite particle size, aspect ratio, and volume fraction. To evaluate the applicability of the proposed model, four dual-phase steels containing 12, 25, 34, and 48% volume fractions of martensite are prepared from the intermediate quenching process, and then after the strain-hardening stages are investigated. Comparing the experimental result and model output reveals that the presented model shows good predictive capabilities to identify strain-hardening stages and estimate the inverse of the strain-hardening exponent.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] THE STRAIN-HARDENING BEHAVIOR OF DUAL-PHASE STEEL
    PARUZ, H
    EDMONDS, DV
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 : 67 - 74
  • [2] Multi-stage strain-hardening behavior of dual-phase steels: A review
    Najafi, Y.
    Mazaheri, Y.
    Ragheb, Z. Delbari
    Daiy, H.
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 31 : 3860 - 3882
  • [3] Strain Hardening Behavior of Dual-Phase Steels
    V. Colla
    M. De Sanctis
    A. Dimatteo
    G. Lovicu
    A. Solina
    R. Valentini
    [J]. Metallurgical and Materials Transactions A, 2009, 40 : 2557 - 2567
  • [4] Strain Hardening Behavior of Dual-Phase Steels
    Colla, V.
    De Sanctis, M.
    Dimatteo, A.
    Lovicu, G.
    Solina, A.
    Valentini, R.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (11): : 2557 - 2567
  • [5] Strain-Hardening Behavior of Dual-Phase Steel under Multistress States
    Yongsheng Xu
    Wenjiao Dan
    Chuang Ren
    Weigang Zhang
    [J]. Journal of Materials Engineering and Performance, 2019, 28 : 4882 - 4893
  • [6] Strain-Hardening Behavior of Dual-Phase Steel under Multistress States
    Xu, Yongsheng
    Dan, Wenjiao
    Ren, Chuang
    Zhang, Weigang
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (08) : 4882 - 4893
  • [7] THE EFFECT OF MICROSTRUCTURE AND STRAIN RATE ON THE STAGE-III STRAIN-HARDENING AND DUCTILITY OF DUAL-PHASE STEELS
    NAGORKA, MS
    KRAUSS, G
    MATLOCK, DK
    [J]. MATERIALS SCIENCE AND ENGINEERING, 1987, 94 : 183 - 193
  • [8] Strain Hardening Dependence on the Structure in Dual-Phase Steels
    Soliman, Mohamed
    Palkowski, Heinz
    [J]. STEEL RESEARCH INTERNATIONAL, 2021, 92 (04)
  • [9] Micromechanical modeling of the effect of phase distribution topology on the plastic behavior of dual-phase steels
    Hou, Yuliang
    Cai, Shouyu
    Sapanathan, Thaneshan
    Dumon, Alexandre
    Rachik, Mohamed
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 : 243 - 254
  • [10] AN EVALUATION OF THE STRAIN-HARDENING BEHAVIOR OF DUAL-PHASE STEEL AT BOTH LOW AND HIGH STRAINS
    KRAUSS, G
    MATLOCK, DK
    [J]. JOURNAL OF METALS, 1980, 32 (12): : 63 - 63