A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition

被引:97
|
作者
Zhang, Jiusi [1 ]
Li, Xiang [1 ]
Tian, Jilun [1 ]
Jiang, Yuchen [1 ]
Luo, Hao [1 ]
Yin, Shen [2 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Dept Control Sci & Engn, Harbin, Peoples R China
[2] Norwegian Univ Sci & Technol, Fac Engn, Dept Mech & Ind Engn, N-7034 Trondheim, Norway
基金
中国博士后科学基金;
关键词
Remaining useful life; Transfer learning; Variational auto-encoder; Local weighted deep sub-domain adaptation; Prediction; PROGNOSTICS;
D O I
10.1016/j.ress.2022.108986
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most supervised learning-based approaches follow the assumptions that offline data and online data must obey a similar distribution, which is difficult to satisfy in realistic remaining useful life (RUL) prediction. To solve the problem, domain adaptation (DA) learning-oriented transfer learning (TL) was proposed. Nevertheless, only adopting a conventional global DA approach may confuse the fine-grained features between subdomains represented by different degenerate stages. Consequently, a novel variational auto-encoder-long-short-term memory network-local weighted deep sub-domain adaptation network (VLSTM-LWSAN) is proposed for RUL prediction. Specifically, the input data are compressed into the interpretable latent space, from which the fine-grained features between subdomains are local alignment through local weighted deep sub-domain adaptation network. In this sense, the discrepancy between the unlabeled target domain and the source domain is decreased. The proposed VLSTM-LWSAN is verified by an aircraft turbofan engine dataset. The research results represent that the VLSTM-LWSAN outperforms some deep learning approaches without transfer learning and conventional transfer learning approaches.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Label adversarial domain adaptation network for predicting remaining useful life based on cross-domain condition
    Lv, Shanshan
    Xia, Chengcheng
    Cheng, Cong
    Yan, Jianhai
    Wu, Xiaodan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 197
  • [2] Cross-domain Remaining Useful Life prediction under unseen condition via Mixed Data and Domain Generalization
    Lei, Xiaochen
    Shao, Huikai
    Tang, Zixiang
    Xu, Shengjun
    Zhong, Dexing
    MEASUREMENT, 2025, 244
  • [3] A novel two-dimensional progressive domain adaptation framework for cross-domain remaining useful life prediction
    Cen, Zilang
    Hu, Shaolin
    Hou, Yandong
    Sun, Guoxi
    Chen, Zhengquan
    Ke, Ye
    MEASUREMENT, 2025, 244
  • [4] Weighted Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Wu, Kangkai
    Li, Jingjing
    Zuo, Lin
    Lu, Ke
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] Cross-Domain Remaining Useful Life Prediction Based on Adversarial Training
    Duan, Yuhang
    Xiao, Jie
    Li, Honghui
    Zhang, Jie
    MACHINES, 2022, 10 (06)
  • [6] Machine cross-domain remaining useful life prediction via contrastive adversarial variational recurrent method
    Hu, Jingwen
    Wang, Yashun
    Chen, Xun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2024,
  • [7] An unsupervised subdomain adaptation of cross-domain remaining useful life prediction for sensor-equipped equipments
    Yan, Jianhai
    Ye, Zhi-Sheng
    He, Shuguang
    He, Zhen
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 203
  • [8] Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction
    Yang, Jing
    Wang, Xiaomin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 244
  • [9] A new domain adaption residual separable convolutional neural network model for cross-domain remaining useful life prediction
    Zhao, Chengying
    Huang, Xianzhen
    Li, Shangjie
    Li, Yuxiong
    Sun, Liangshi
    ISA TRANSACTIONS, 2024, 145 : 239 - 252
  • [10] Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning
    Lu, Xingchi
    Yao, Xuejian
    Jiang, Quansheng
    Shen, Yehu
    Xu, Fengyu
    Zhu, Qixin
    COMPUTERS IN INDUSTRY, 2025, 164