Understanding the importance of spatial correlation in identifying spatio-temporal variation of disease risk, in the case of malaria risk mapping in southern Ethiopia

被引:1
|
作者
Kitawa, Yonas Shuke [1 ]
Johnson, Olatunji [2 ]
Giorgi, Emanuele [3 ]
Asfaw, Zeytu Gashaw [4 ]
机构
[1] Hawassa Univ, Coll Nat & Computat Sci, Dept Stat, Hawassa, Ethiopia
[2] Univ Manchester, Dept Math, Manchester, Lancs, England
[3] Univ Lancaster, Lancaster Med Sch, CHICAS, Lancaster, England
[4] Addis Ababa Univ, Sch Publ Hlth, Dept Biostat & Epidemiol, Addis Ababa, Ethiopia
关键词
Disease mapping; Geostatistics; Log-Gaussian Cox process; STSDALGCP; Monte Carlo maximum likelihood; P.falciparum; GAUSSIAN COX PROCESSES; LAPLACE APPROXIMATION; MODEL; INFERENCE;
D O I
10.1016/j.sciaf.2023.e01926
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Malaria remains a major health problem in developing countries despite a significant reduction in incidence in the last few years. Disease mapping thus helps to understand the spatial pattern and identify areas characterized by unusual risks. Several spatial models have been used to analyze the incidence of malaria. We aim to compare the predictive performance of these models and investigate the effect of ignoring spatial correlation. The reported malaria case counts of genus P.falciparum in 149 districts of southern Ethiopia from January 2016 to May 2019 were analyzed using the spatial time series model (STS) that ignores spatial correlation, Spatiotemporal conditional autoregressive model (STCAR), Spatio-temporal geostatistical model (STG) and Spatio-temporal spatial discrete approximation to log Gaussian cox process (STSDALGCP). We assess the predictive performance of the models using root mean square error, mean absolute error, and coverage probability. We found that monthly average rainfall, temperature, humidity, and EVI are significantly associated with malaria risk. The spatial variation of malaria incidence changes with time, in particular, the high incidence was observed from November to December, months after heavy rainfall, and more pronounced in the southwest of the country. STSDALGCP gives a small prediction error in test set and captures the uncertainties better than other models, while the STS model gives a high prediction error. Accounting for spatial correlation is crucial for disease risk mapping and leads to better prediction of disease risk. Since malaria transmission operates in a spatially continuous manner, a spatially continuous model should be considered when it is computationally feasible.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spatial and spatio-temporal methods for mapping malaria risk: a systematic review
    Odhiambo, Julius Nyerere
    Kalinda, Chester
    Macharia, Peter M.
    Snow, Robert W.
    Sartorius, Benn
    BMJ GLOBAL HEALTH, 2020, 5 (10):
  • [2] Spatio-Temporal Variation of Malaria Incidence and Risk Factors in West Gojjam Zone, Northwest Ethiopia
    Tegegne, Eniyew
    Alemu Gelaye, Kassahun
    Dessie, Awrajaw
    Shimelash, Alebachew
    Asmare, Biachew
    Deml, Yikeber Argachew
    Lamore, Yonas
    Temesgen, Tegegne
    Demissie, Biruk
    Teym, Abraham
    ENVIRONMENTAL HEALTH INSIGHTS, 2022, 16
  • [3] Spatio-Temporal Variation of Malaria Incidence and Risk Factors in West Gojjam Zone, Northwest Ethiopia
    Tegegne, Eniyew
    Gelaye, Kassahun Alemu
    Dessie, Awrajaw
    Shimelash, Alebachew
    Asmare, Biachew
    Deml, Yikeber Argachew
    Lamore, Yonas
    Temesgen, Tegegne
    Demissie, Biruk
    Teym, Abraham
    ENVIRONMENTAL HEALTH INSIGHTS, 2022, 16
  • [4] SPATIAL AND SPATIO-TEMPORAL RISK MAPPING FOR RARE DISEASE USING HIDDEN MARKOV MODELS
    Azizi, L.
    Forbes, F.
    Abrial, D.
    Charras-garrido, M.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S54 - S54
  • [5] Bayesian spatio-temporal modeling of malaria risk in Rwanda
    Semakula, Muhammed
    Niragire, Francois
    Faes, Christel
    PLOS ONE, 2020, 15 (09):
  • [6] High-resolution spatio-temporal risk mapping for malaria in Namibia: a comprehensive analysis
    Zhang, Song
    Amratia, Punam
    Symons, Tasmin L.
    Rumisha, Susan F.
    Kang, Su Yun
    Connell, Mark
    Uusiku, Petrina
    Katokele, Stark
    Hamunyela, Jerobeam
    Ntusi, Nelly
    Soroses, Wilma
    Moyo, Ernest
    Lukubwe, Ophilia
    Maponga, Chivimbiso
    Lucero, Dominic
    Gething, Peter W.
    Cameron, Ewan
    MALARIA JOURNAL, 2024, 23 (01)
  • [7] Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda
    Hakizimana, Emmanuel
    Karema, Corine
    Munyakanage, Dunia
    Githure, John
    Mazarati, Jean Baptiste
    Tongren, Jon Eric
    Takken, Willem
    Binagwaho, Agnes
    Koenraadt, Constantianus J. M.
    ACTA TROPICA, 2018, 182 : 149 - 157
  • [8] Spatio-temporal Prediction of the Malaria Transmission Risk in Minab District (Hormozgan Province, Southern Iran)
    Abdolreza Salahi-Moghaddam
    Habibollah Turki
    Masoud Yeryan
    Màrius V. Fuentes
    Acta Parasitologica, 2022, 67 : 1500 - 1513
  • [9] Spatio-temporal Prediction of the Malaria Transmission Risk in Minab District (Hormozgan Province, Southern Iran)
    Salahi-Moghaddam, Abdolreza
    Turki, Habibollah
    Yeryan, Masoud
    Fuentes, Marius, V
    ACTA PARASITOLOGICA, 2022, 67 (04) : 1500 - 1513
  • [10] Disease mapping and spatio-temporal analysis: importance of expected-case computation criteria
    Lopez-Abente, Gonzalo
    Aragones, Nuria
    Garcia-Perez, Javier
    Fernandez-Navarro, Pablo
    GEOSPATIAL HEALTH, 2014, 9 (01) : 27 - 35