Co-production of hydrochar and bioactive compounds from Ulva lactuca via a hydrothermal process

被引:7
|
作者
Hartulistiyoso, Edy [1 ,2 ]
Farobie, Obie [1 ,2 ]
Anis, Latifa A. [2 ]
Syaftika, Novi [3 ]
Bayu, Asep [4 ]
Amrullah, Apip [5 ]
Moheimani, Navid R. [6 ]
Karnjanakom, Surachai [7 ]
Matsumura, Yukihiko [8 ]
机构
[1] IPB Univ, Dept Mech & Biosyst Engn, Bogor 16002, West Java, Indonesia
[2] IPB Univ, Surfactant & Bioenergy Res Ctr SBRC, Bogor 16144, West Java, Indonesia
[3] Natl Res & Innovat Agcy BRIN, Res Ctr Ind Proc & Mfg Technol, Tangerang, Selatan, Indonesia
[4] Natl Res & Innovat Agcy BRIN, Res Ctr Vaccine & Drugs, Bogor 16911, West Java, Indonesia
[5] Lambung Mangkurat Univ, Dept Mech Engn, Banjarmasin, South Kalimanta, Indonesia
[6] Murdoch Univ, Harry Butler Inst, Algae R&D Ctr, Murdoch, WA 6150, Australia
[7] Rangsit Univ, Dept Chem, Pathum Thani 12000, Thailand
[8] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan
关键词
Algae; Bioactive compound; Hydrochar; Hydrothermal; Seaweed; BIOCHAR PRODUCTION; PROCESS WATER; BIO-OIL; CARBONIZATION; BIOMASS; RESIDUES;
D O I
10.1016/j.crcon.2023.05.002
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigates the simultaneous production of hydrochar and bioactive compounds from Ulva lactuca via a hydrothermal process. The experiment was carried out using a batch reaction vessel at different reaction temperatures of 180-220 degrees C and various holding times of 30-90 min. As expected, both temperature and time vigorously influenced hydrochar and bioactive compound production. The maximum hydrochar yield was at 32.4 wt%. The higher heating value (HHV) of hydrochar was observed in the range of 17.68-21.07 MJ kg-1, near the energy content of low-rank coals. The hydrochars exhibited contact angles higher than 90 degrees (i.e., 94-108 degrees) for a longer time, confirming their hydrophobic surfaces. The scanning electron microscope analysis (SEM) showed that the hydrothermal process enables cracks in the spherical shape of raw U. lactuca into small and porous particles. Besides producing hydrochar, the hydrothermal process of U. lactuca also gives promising antioxidants and phenolics as bioactive compounds. The highest total phenolic content and antioxidant activity could be achieved in hydrolysate at 200 degrees C and 30 min with the value of 1.20 +/- 0.12 mg/g and 71.6 +/- 1.3%, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Extraction of Bioactive Compounds from Ulva lactuca
    Pappou, Sofia
    Dardavila, Maria Myrto
    Savvidou, Maria G.
    Louli, Vasiliki
    Magoulas, Kostis
    Voutsas, Epaminondas
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [2] Simultaneous production of nutritional compounds and hydrochar from Chlorella pyrenoidosa via hydrothermal process
    Farobie, Obie
    Anis, Latifa Aisya
    Fatriasari, Widya
    Karimah, Azizatul
    Nurcahyani, Puji Rahmawati
    Rahman, Delicia Yunita
    Nafisyah, Ayu Lana
    Amrullah, Apip
    Aziz, Muhammad
    Bioresource Technology Reports, 2022, 20
  • [3] Simultaneous production of nutritional compounds and hydrochar from Chlorella pyrenoidosa via hydrothermal process
    Farobie, Obie
    Anis, Latifa Aisya
    Fatriasari, Widya
    Karimah, Azizatul
    Nurcahyani, Puji Rahmawati
    Rahman, Delicia Yunita
    Nafisyah, Ayu Lana
    Amrullah, Apip
    Aziz, Muhammad
    BIORESOURCE TECHNOLOGY REPORTS, 2022, 20
  • [4] Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization
    Youn, Hee Sun
    Um, Byung Hwan
    APPLIED CHEMISTRY FOR ENGINEERING, 2022, 33 (01): : 28 - 37
  • [5] Co-production of Monosaccharides and Hydrochar from Green Macroalgae Ulva (Chlorophyta) sp. with Subcritical Hydrolysis and Carbonization
    Semion Greiserman
    Michael Epstein
    Alexander Chemodanov
    Efraim Steinbruch
    Meghanath Prabhu
    Lior Guttman
    Gabriel Jinjikhashvily
    Olga Shamis
    Michael Gozin
    Abraham Kribus
    Alexander Golberg
    BioEnergy Research, 2019, 12 : 1090 - 1103
  • [6] Co-production of Monosaccharides and Hydrochar from Green Macroalgae Ulva (Chlorophyta) sp. with Subcritical Hydrolysis and Carbonization
    Greiserman, Semion
    Epstein, Michael
    Chemodanov, Alexander
    Steinbruch, Efraim
    Prabhu, Meghanath
    Guttman, Lior
    Jinjikhashvily, Gabriel
    Shamis, Olga
    Gozin, Michael
    Kribus, Abraham
    Golberg, Alexander
    BIOENERGY RESEARCH, 2019, 12 (04) : 1090 - 1103
  • [7] Green algae to green fuels: Syngas and hydrochar production from Ulva lactuca via sub-critical water gasification
    Farobie, Obie
    Syaftika, Novi
    Masfuri, Imron
    Rini, Tyas Puspita
    Es, Dovan P. A. Lanank
    Bayu, Asep
    Amrullah, Apip
    Hartulistiyoso, Edy
    Moheimani, Navid R.
    Karnjanakom, Surachai
    Matsumura, Yukihiko
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2022, 67
  • [8] Thermophilic anaerobic digestion of cattail and hydrothermal carbonization of the digestate for co-production of biomethane and hydrochar
    Zhang, Bo
    Joseph, Gail
    Wang, Lijun
    Li, Xin
    Shahbazi, Abolghasem
    Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55 (03): : 230 - 238
  • [9] Thermophilic anaerobic digestion of cattail and hydrothermal carbonization of the digestate for co-production of biomethane and hydrochar
    Zhang, Bo
    Joseph, Gail
    Wang, Lijun
    Li, Xin
    Shahbazi, Abolghasem
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2020, 55 (03): : 230 - 238
  • [10] Biorefinery for the co-production of protein, hydrochar and additional co-products from a green seaweed Ulva sp. with subcritical water hydrolysis
    Polikovsky, Mark
    Gillis, Amichai
    Steinbruch, Efraim
    Robin, Arthur
    Epstein, Michael
    Kribus, Abraham
    Golberg, Alexander
    ENERGY CONVERSION AND MANAGEMENT, 2020, 225