High electrochemical active Au-NP/2D zinc-metal organic frameworks heterostructure-based ECL sensor for the miRNA-522 detection in triple negative breast cancer

被引:16
|
作者
Zhong, Weiyao [1 ]
Zhang, Yang [1 ]
Zhao, He [1 ]
Liang, Zihui [2 ]
Shi, Jingwei [1 ]
Ma, Qiang [2 ]
机构
[1] Jilin Univ, Dept Lab Med Ctr, China Japan Union Hosp, Changchun 130033, Peoples R China
[2] Jilin Univ, Coll Chem, Dept Analyt Chem, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
2D MOF heterostructure; miRNA-522; detection; ECL sensor; Triple-negative breast cancer diagnosis;
D O I
10.1016/j.talanta.2023.124875
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect the miRNA-522 in the tumor tissues of triple-negative breast cancer (TNBC) patients. Au NPs/Zn MOF heterostructure was obtained by in situ growth and used as novel luminescence probe. Firstly, zinc-metal organic framework nanosheets (Zn MOF NSs) were synthesized with Zn2+ as the central metal ion and 2-aminoterephthalic acid (NH2-BDC) as the ligand. 2D MOF nanosheets with ultra-thin layered structure and relatively large specific surface areas can enhance the catalytic activity in the ECL generation. Furthermore, the electron transfer capacity and the electrochemical active surface area of MOF were greatly improved by the growth of Au NPs. Therefore, Au NPs/Zn MOF heterostructure showed the significant electrochemical activity in the sensing process. In addition, the magnetic Fe3O4@SiO2@Au microspheres were used as capture units in the magnetic separation step. The magnetic spheres with hairpin aptamer H1 can capture target gene. Then the captured miRNA-522 triggered the target catalyzed hairpin assembly (CHA) sensing process and linked Au NPs/Zn MOF heterostructure. The concentration of miRNA-522 can be quantified by the ECL signal enhancement of the Au NPs/Zn MOF heterostructure. Due to the high catalytic activity of Au NPs/Zn MOF heterostructure and their unique structural and electrochemical properties, the prepared ECL sensor achieved high-sensitive detection of miRNA-522 in the range of 1 fM to 0.1 nM with the detection limit of 0.3 fM. This strategy can provide a potential alternative for miRNA detection in medical research and clinical diagnosis of triple negative breast cancer.
引用
收藏
页数:8
相关论文
共 1 条
  • [1] A novel work function tuning strategy-based ECL sensor with sulfur dots and Au NP@MoS2 nanosheet heterostructure for triple-negative breast cancer diagnosis
    Hou, Sining
    Wang, Peilin
    Nie, Yixin
    Guo, Yupeng
    Ma, Qiang
    CHEMICAL ENGINEERING JOURNAL, 2022, 446