The Kraichnan Model and Non-equilibrium Statistical Physics of Diffusive Mixing

被引:3
|
作者
Eyink, Gregory [1 ,2 ]
Jafari, Amir [1 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, 3400 N Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
来源
ANNALES HENRI POINCARE | 2024年 / 25卷 / 01期
关键词
82C05; 82B31; 82D15; 76F25; 60H30; PASSIVE SCALAR; IRREVERSIBLE-PROCESSES; RECIPROCAL RELATIONS; LIQUID-MIXTURES; FLUCTUATIONS; RENORMALIZATION; SCATTERING;
D O I
10.1007/s00023-022-01253-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss application of methods from the Kraichnan model of turbulent advection to the study of non-equilibrium concentration fluctuations arising during diffusion in liquid mixtures at high Schmidt numbers. This approach treats nonlinear advection of concentration fluctuations exactly, without linearization. Remarkably, we find that static and dynamic structure functions obtained by this method reproduce precisely the predictions of linearized fluctuating hydrodynamics. It is argued that this agreement is an analogue of anomaly non-renormalization which does not, however, protect higher-order multi-point correlations. The latter should thus yield non-vanishing cumulants, unlike those for the Gaussian concentration fluctuations predicted by linearized theory.
引用
收藏
页码:497 / 516
页数:20
相关论文
共 50 条
  • [1] The Kraichnan Model and Non-equilibrium Statistical Physics of Diffusive Mixing
    Gregory Eyink
    Amir Jafari
    Annales Henri Poincaré, 2024, 25 : 497 - 516
  • [2] Tributes of Non-equilibrium Statistical Physics Preface
    Esposito, Massimiliano
    Indekeu, Joseph
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 552
  • [3] A model of non-equilibrium statistical mechanics
    Piasecki, J
    Sinai, YG
    DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 191 - 199
  • [4] An Introduction to Stochastic Processes and Non-Equilibrium Statistical Physics
    Porra, J. M.
    Journal of Statistical Physics, 82 (1-2):
  • [5] Statistical physics and fluctuations in ballistic non-equilibrium systems
    Alvarez, F. X.
    Jou, D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2367 - 2372
  • [6] Non-Equilibrium Statistical Physics of Currents in Queuing Networks
    Chernyak, Vladimir Y.
    Chertkov, Michael
    Goldberg, David A.
    Turitsyn, Konstantin
    JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (05) : 819 - 845
  • [7] Some recent developments in non-equilibrium statistical physics
    Mallick, K.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03): : 417 - 451
  • [8] APPLICATIONS OF TRIDIAGONAL MATRICES IN NON-EQUILIBRIUM STATISTICAL PHYSICS
    Mazilu, Irina
    Mazilu, Dan A.
    Williams, H. Thomas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 24 : 7 - 17
  • [9] Some recent developments in non-equilibrium statistical physics
    K. Mallick
    Pramana, 2009, 73 : 417 - 451
  • [10] Non-Equilibrium Statistical Physics of Currents in Queuing Networks
    Vladimir Y. Chernyak
    Michael Chertkov
    David A. Goldberg
    Konstantin Turitsyn
    Journal of Statistical Physics, 2010, 140 : 819 - 845