Enhancing drug-drug interaction prediction by three-way decision and knowledge graph embedding

被引:10
|
作者
Hao, Xinkun [1 ,3 ]
Chen, Qingfeng [1 ,2 ,3 ]
Pan, Haiming [1 ,3 ]
Qiu, Jie [1 ,3 ]
Zhang, Yuxiao [1 ,3 ]
Yu, Qian [1 ,3 ]
Han, Zongzhao [1 ,3 ]
Du, Xiaojing [1 ,3 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Guangxi, Peoples R China
[2] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia
[3] Yulin Normal Univ, Sch Comp Sci & Engn, Yulin 537000, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug-drug interactions; Three-way decision; Knowledge graph; Convolutional neural network; RESOURCE;
D O I
10.1007/s41066-022-00315-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug-Drug interaction (DDI) prediction is essential in pharmaceutical research and clinical application. Existing computational methods mainly extract data from multiple resources and treat it as binary classification. However, this cannot unambiguously tell the boundary between positive and negative samples owing to the incompleteness and uncertainty of derived data. A granular computing method called three-way decision is proved to be effective in making uncertain decision, but it relies on supplementary information to make delay decision. Recently, biomedical knowledge graph has been regarded as an important source to obtain abundant supplementary information about drugs. This paper proposes a three-way decision-based method called 3WDDI, in combination with knowledge graph embedding as supplementary features to enhance DDI prediction. The drug pairs are divided into positive, negative and boundary regions by Convolutional Neural Network (CNN) according to drug chemical structure feature. Further, delay decision is made for objects in the boundary region by integrating knowledge graph embedding feature to promote the accuracy of decision-making. The empirical results show that 3WDDI yields up to 0.8922, 0.9614, 0.9582, 0.8930 for Accuracy, AUPR, AUC and F1-score, respectively, and outperforms several baseline models.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [1] Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
    Xinkun Hao
    Qingfeng Chen
    Haiming Pan
    Jie Qiu
    Yuxiao Zhang
    Qian Yu
    Zongzhao Han
    Xiaojing Du
    Granular Computing, 2023, 8 : 67 - 76
  • [2] Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
    Remzi Celebi
    Huseyin Uyar
    Erkan Yasar
    Ozgur Gumus
    Oguz Dikenelli
    Michel Dumontier
    BMC Bioinformatics, 20
  • [3] Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
    Celebi, Remzi
    Uyar, Huseyin
    Yasar, Erkan
    Gumus, Ozgur
    Dikenelli, Oguz
    Dumontier, Michel
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [4] Drug-Drug Interaction Prediction on a Biomedical Literature Knowledge Graph
    Bougiatiotis, Konstantinos
    Aisopos, Fotis
    Nentidis, Anastasios
    Krithara, Anastasia
    Paliouras, Georgios
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 122 - 132
  • [5] Biomedical Knowledge Graph Embedding With Capsule Network for Multi-Label Drug-Drug Interaction Prediction
    Su, Xiaorui
    You, Zhuhong
    Huang, Deshuang
    Wang, Lei
    Wong, Leon
    Ji, Boya
    Zhao, Bowei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5640 - 5651
  • [6] Enhancing Knowledge Graph Embedding with Hierarchical Self-Attention and Graph Neural Network Techniques for Drug-Drug Interaction Prediction in Virtual Reality Environments
    Jiang, Lizhen
    Zhang, Sensen
    SYMMETRY-BASEL, 2024, 16 (05):
  • [7] KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction
    Lin, Xuan
    Quan, Zhe
    Wang, Zhi-Jie
    Ma, Tengfei
    Zeng, Xiangxiang
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2739 - 2745
  • [8] Integrated Knowledge Graph and Drug Molecular Graph Fusion via Adversarial Networks for Drug-Drug Interaction Prediction
    Li, Yu
    You, Zhu-Hong
    Yuan, Yang
    Mi, Cheng-Gang
    Huang, Yu-An
    Yi, Hai-Cheng
    Hou, Lin-Xuan
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (21) : 8361 - 8372
  • [9] Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
    Wang, Meng
    Wang, Haofen
    Liu, Xing
    Ma, Xinyu
    Wang, Beilun
    JMIR MEDICAL INFORMATICS, 2021, 9 (06)
  • [10] Drug-drug Interaction Prediction with Graph Representation Learning
    Chen, Xin
    Liu, Xien
    Wu, Ji
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 354 - 361