An accelerated proximal algorithm for regularized nonconvex and nonsmooth bi-level optimization

被引:2
|
作者
Chen, Ziyi [1 ]
Kailkhura, Bhavya [2 ]
Zhou, Yi [1 ]
机构
[1] Univ Utah, Elect & Comp Dept, 50 Cent Campus Dr 2110, Salt Lake City, UT 84112 USA
[2] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 10587 USA
基金
美国国家科学基金会;
关键词
Bilevel optimization; Nesterov's momentum; Nonconvex regularization; Proximal algorithm; CONVERGENCE;
D O I
10.1007/s10994-023-06329-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many important machine learning applications involve regularized nonconvex bi-level optimization. However, the existing gradient-based bi-level optimization algorithms cannot handle nonconvex or nonsmooth regularizers, and they suffer from a high computation complexity in nonconvex bi-level optimization. In this work, we study a proximal gradient-type algorithm that adopts the approximate implicit differentiation (AID) scheme for nonconvex bi-level optimization with possibly nonconvex and nonsmooth regularizers. In particular, the algorithm applies the Nesterov's momentum to accelerate the computation of the implicit gradient involved in AID. We provide a comprehensive analysis of the global convergence properties of this algorithm through identifying its intrinsic potential function. In particular, we formally establish the convergence of the model parameters to a critical point of the bi-level problem, and obtain an improved computation complexity (O) over tilde(?(3.5)e(-2))over the state-of-the-art result. Moreover, we analyze the asymptotic convergence rates of this algorithm under a class of local nonconvex geometries characterized by a Lojasiewicz-type gradient inequality. Experiment on hyper-parameter optimization demonstrates the effectiveness of our algorithm.
引用
收藏
页码:1433 / 1463
页数:31
相关论文
共 50 条
  • [1] An accelerated proximal algorithm for regularized nonconvex and nonsmooth bi-level optimization
    Ziyi Chen
    Bhavya Kailkhura
    Yi Zhou
    [J]. Machine Learning, 2023, 112 : 1433 - 1463
  • [2] A Fast and Convergent Proximal Algorithm for Regularized Nonconvex and Nonsmooth Bi-level Optimization
    Chen, Ziyi
    Kailkhura, Bhavya
    Zhou, Yi
    [J]. arXiv, 2022,
  • [3] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Liu, Ruyu
    Pan, Shaohua
    Wu, Yuqia
    Yang, Xiaoqi
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (02) : 603 - 641
  • [4] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Ruyu Liu
    Shaohua Pan
    Yuqia Wu
    Xiaoqi Yang
    [J]. Computational Optimization and Applications, 2024, 88 : 603 - 641
  • [5] An Accelerated Block Proximal Framework with Adaptive Momentum for Nonconvex and Nonsmooth Optimization
    Yang, Weifeng
    Min, Wenwen
    [J]. arXiv, 2023,
  • [6] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    Monjezi, N. Hoseini
    Nobakhtian, S.
    [J]. OPTIMIZATION LETTERS, 2022, 16 (05) : 1495 - 1511
  • [7] Convergence of the proximal bundle algorithm for nonsmooth nonconvex optimization problems
    N. Hoseini Monjezi
    S. Nobakhtian
    [J]. Optimization Letters, 2022, 16 : 1495 - 1511
  • [8] Perturbed proximal primal–dual algorithm for nonconvex nonsmooth optimization
    Davood Hajinezhad
    Mingyi Hong
    [J]. Mathematical Programming, 2019, 176 : 207 - 245
  • [9] Proximal ADMM for nonconvex and nonsmooth optimization
    Yang, Yu
    Jia, Qing-Shan
    Xu, Zhanbo
    Guan, Xiaohong
    Spanos, Costas J.
    [J]. AUTOMATICA, 2022, 146
  • [10] Perturbed proximal primal-dual algorithm for nonconvex nonsmooth optimization
    Hajinezhad, Davood
    Hong, Mingyi
    [J]. MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 207 - 245