Alternative proofs of some classical metric fixed point theorems by using approximate fixed point sequences

被引:1
|
作者
Berinde, Vasile [1 ,2 ]
Pacurar, Madalina [3 ]
机构
[1] Tech Univ Cluj Napoca, North Univ Ctr Baia Mare, Dept Math & Comp Sci, Victoriei 76, Baia Mare 430122, Romania
[2] Acad Romanian Scientists, Bucharest, Romania
[3] Babes Bolyai Univ Cluj Napoca, Fac Econ & Bussiness Adm, Dept Econ & Bussiness Adm German Language, T Mihali 58-60, Cluj Napoca 400591, Romania
关键词
47H09; 47H10; 54H25; CONVERGENCE THEOREMS; BANACH-SPACES; ITERATIVE APPROXIMATION; ASYMPTOTIC REGULARITY; NONEXPANSIVE-MAPPINGS; CONTRACTIONS;
D O I
10.1007/s40065-022-00398-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of approximate fixed point sequence, emphasized in Chidume (Geometric properties of Banach spaces and nonlinear iterations. Lecture Notes in Mathematics, 1965. Springer-Verlag London, Ltd., London, 2009), is a very useful tool in proving convergence theorems for fixed point iterative schemes in the class of nonexpansive-type mappings. In the present paper, our aim is to present simple and unified alternative proofs of some classical fixed point theorems emerging from Banach contraction principle, by using a technique based on the concepts of approximate fixed point sequence and graphic contraction.
引用
收藏
页码:341 / 351
页数:11
相关论文
共 50 条
  • [1] Alternative proofs of some classical metric fixed point theorems by using approximate fixed point sequences
    Vasile Berinde
    M̆ad̆alina P̆acurar
    Arabian Journal of Mathematics, 2023, 12 : 341 - 351
  • [2] Some fixed point theorems in metric spaces
    Jotic, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1995, 26 (10): : 947 - 952
  • [3] NEW EXISTENCE THEOREMS FOR APPROXIMATE COINCIDENCE POINT PROPERTY AND APPROXIMATE FIXED POINT PROPERTY WITH APPLICATIONS TO METRIC FIXED POINT THEORY
    Du, Wei-Shih
    He, Zhenhua
    Chen, Yi-Liang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (03) : 459 - 474
  • [4] APPROXIMATE FIXED POINT THEOREMS
    Berinde, Madalina
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (01): : 11 - 25
  • [5] SOME FIXED AND COMMON FIXED-POINT THEOREMS IN METRIC SPACES
    SEHGAL, VM
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (02): : 257 - 259
  • [6] New Proofs of Fixed Point Theorems on Quasi-Metric Spaces
    Park, Sehie
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [7] SOME FIXED POINT THEOREMS IN PARTIAL METRIC SPACES
    Gangopadhyay, Mukti
    Saha, Mantu
    Baisnab, A. P.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2013, 3 (02): : 206 - 213
  • [8] SOME FIXED POINT THEOREMS IN FUZZY METRIC SPACE
    Mishra, Urmila
    Ranadive, Abhay Sharad
    Gopal, Dhananjay
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (04): : 309 - 316
  • [9] On some fixed point theorems in generalized metric spaces
    ElKouch Y.
    Marhrani E.M.
    Fixed Point Theory and Applications, 2017 (1)
  • [10] SOME FIXED POINT THEOREMS IN METRIC AND BANACH SPACES
    BELLUCE, LP
    KIRK, WA
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (04): : 481 - &