Impact of varying macronutrient composition on the printability of pea-based inks in extrusion-based 3D food printing

被引:11
|
作者
Venkatachalam, Aaditya [1 ]
Balasubramaniam, Ajay [2 ]
Wilms, Patrick F. C. [1 ]
Zhang, Lu [1 ]
Schutyser, Maarten A. I. [1 ]
机构
[1] Wageningen Univ, Lab Food Proc Engn, Bornse Weilanden 9,POB 17, NL-6708 WG Wageningen, Netherlands
[2] NavInfo Europe BV, Adv Res Lab, NL-5657 DB Eindhoven, Netherlands
关键词
3D food printing; Water holding capacity; Macronutrient composition; Extrudability; Buildability; Printing precision; WATER-HOLDING CAPACITY; PROTEIN; RHEOLOGY;
D O I
10.1016/j.foodhyd.2023.108760
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Personalized foods with varying macronutrient compositions can be created by 3D food printing to fulfill the dietary requirements of individual consumers. In this work, we aim to quantitatively study the influence of varying multiple macronutrient concentrations on printability of food inks, by applying a systematic approach. Pea-based food inks consisting of insoluble pea fibre, pea protein, and native pea starch were formulated and water was added following these ingredients' respective water holding capacities. Printability was quantified in terms of extrudability (force required to extrude material out of a cartridge), buildability (flow point to deter-mine shape stability after deposition on the printing platform), and printing precision (surface defect index (SDI) of the printed object). This approach helps to efficiently define a printable landscape of pea-based inks with a large variation in macronutrient composition. Our results show that increasing protein concentration resulted in increased extrusion force and flow point, while the opposite effect was found for fibre. Of all the tested pea-based formulations, 71% could be printed to a height of 50 mm with high printing precision (SDI<0.14). The presented systematic approach provides a solid basis for rapid development of printable plant-based inks while avoiding a trial-and-error approach to optimize inks with highly variable macronutrient composition.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques
    Kadival, Amaresh
    Kour, Manpreet
    Meena, Deepoo
    Mitra, Jayeeta
    [J]. FOOD AND BIOPROCESS TECHNOLOGY, 2023, 16 (05) : 987 - 1008
  • [2] Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques
    Amaresh Kadival
    Manpreet Kour
    Deepoo Meena
    Jayeeta Mitra
    [J]. Food and Bioprocess Technology, 2023, 16 : 987 - 1008
  • [3] Bigels as potential inks for extrusion-based 3d food printing: Effect of oleogel fraction on physical characterization and printability
    Fernandes, Andressa Silva
    Neves, Bruna Vitoria
    Mazzo, Tatiana Martelli
    Longo, Elson
    Jacob-Lopez, Eduardo
    Zepka, Leila Queiroz
    de Rosso, Veridiana Vera
    [J]. FOOD HYDROCOLLOIDS, 2023, 144
  • [4] Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
    Garcia-Garcia, Ane
    Perez-Alvarez, Leyre
    Ruiz-Rubio, Leire
    Larrea-Sebal, Asier
    Martin, Cesar
    Vilas-Vilela, Jose Luis
    [J]. GELS, 2024, 10 (02)
  • [5] Formulated food inks for extrusion-based 3D printing of personalized foods: a mini review
    Ma, Yizhou
    Zhang, Lu
    [J]. CURRENT OPINION IN FOOD SCIENCE, 2022, 44
  • [6] Extrusion-based 3D printing of food biopolymers: A highlight on the important rheological parameters to reach printability
    Outrequin, Theo Claude Roland
    Gamonpilas, Chaiwut
    Siriwatwechakul, Wanwipa
    Sreearunothai, Paiboon
    [J]. JOURNAL OF FOOD ENGINEERING, 2023, 342
  • [7] Extrusion-based 3D food printing - Materials and machines
    Tan, Cavin
    Toh, Wei Yan
    Wong, Gladys
    Li, Lin
    [J]. INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (02)
  • [8] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    José Luis Dávila
    Marcos Akira d’Ávila
    [J]. The International Journal of Advanced Manufacturing Technology, 2019, 101 : 675 - 686
  • [9] Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing
    Davila, Jose Luis
    d'Avila, Marcos Akira
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4): : 675 - 686
  • [10] 3D food printing: Applications of plant-based materials in extrusion-based food printing
    Wang, Mingshuang
    Li, Dongnan
    Zang, Zhihuan
    Sun, Xiyun
    Tan, Hui
    Si, Xu
    Tian, Jinlong
    Teng, Wei
    Wang, Jiaxin
    Liang, Qi
    Bao, Yiwen
    Li, Bin
    Liu, Ruihai
    [J]. CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2022, 62 (26) : 7184 - 7198