A novel 3D bacterial cellulose network as cathodic scaffold and hydrogel electrolyte for zinc-ion batteries

被引:18
|
作者
Yue, Xian [1 ]
Wang, Qiuhong [1 ]
Ao, Kelong [1 ]
Shi, Jihong [1 ]
Zhang, Xiangyang [1 ]
Zhao, Hong [1 ]
Uyanga, Kindness [1 ]
Yang, Yang [1 ]
Daoud, Walid A. [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
Zinc -ion batteries; 3D cathodic scaffold; Hydrogel electrolytes; Flexible device; HIGH-CAPACITY; INTERPENETRATING NETWORK; COMPOSITE; CARBON; NANOPARTICLES; NANOFIBERS; AEROGELS; SILICA;
D O I
10.1016/j.jpowsour.2022.232553
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIB) have been subject to intensive research, motivated by the high theoretical specific capacity and relatively low cost of metallic zinc. Nevertheless, cathode dissolution and structural instability result in slow Zn-ion migration dynamics and severe electrode degradation, impeding the develop-ment of ZIB. Herein, to our best knowledge, this is the first time a novel 3D bacterial cellulose (BC) network is successfully used as cathodic scaffold to provide sufficient ion pathways and stabilize the host material. Meanwhile, BC hydrogel electrolyte with high ionic conductivity and flexibility enables the use of ZIB in wearable applications. Carbon nanofibers (CNFs)@Mn3O4 are obtained through carbonization of BC network and pre-absorption of Mn salt. The CNFs@Mn3O4/BC electrolyte/Zn full cell possesses a low inner resistance and thus delivers a high capacity of 415.2 mAh g-1 at 0.1 A g-1. Further, the full cell shows excellent coulombic efficiency above 99% and capacity retention of 88.2% after 1000 cycles at high current density of 2 A g-1. The charge storage mechanism and stability of assembled batteries, unveiled via ex-situ characterization, confirm the reversible diffusion of Zn2+. A flexible ZIB fabricated via facile lamination shows an outstanding energy density of 179 mAh g-1 at 1 A g-1, illustrating potential in wearable applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Enhanced Stability-Based Hydroxymethyl Cellulose/Polyacrylamide Interpenetrating Dual Network Hydrogel Electrolyte for Flexible Yarn Zinc-Ion Batteries
    Li, Ting-Ting
    Chen, Pei
    Fu, Xiang-dong
    Shen, Bao-lei
    Zhang, Lu
    Hsieh, Chien-Teng
    Lin, Jia-Horng
    Lou, Ching-Wen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [2] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    Chemical Engineering Journal, 2024, 479
  • [3] 3D printing of layered vanadium disulfide for water-in-salt electrolyte zinc-ion batteries
    Tagliaferri, Stefano
    Nagaraju, Goli
    Sokolikova, Maria
    Quintin-Baxendale, Rachael
    Mattevi, Cecilia
    NANOSCALE HORIZONS, 2024, 9 (05) : 742 - 751
  • [4] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [5] Developing Thermoregulatory Hydrogel Electrolyte to Overcome Thermal Runaway in Zinc-Ion Batteries
    Meng, Yuan
    Zhang, Lifang
    Peng, Mingji
    Shen, Danni
    Zhu, Changhao
    Qian, Siyi
    Liu, Jie
    Cao, Yufeng
    Yan, Chenglin
    Zhou, Jinqiu
    Qian, Tao
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (46)
  • [6] Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries
    Dong, Haobo
    Li, Jianwei
    Zhao, Siyu
    Jiao, Yiding
    Chen, Jintao
    Tan, Yeshu
    Brett, Dan J. L.
    He, Guanjie
    Parkin, Ivan P.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) : 745 - 754
  • [7] Bacterial cellulose hydrogel: A promising electrolyte for flexible zinc-air batteries
    Zhang, Yanan
    Chen, Yajun
    Li, Xin
    Alfred, Mensah
    Li, Dawei
    Huang, Fenglin
    Wei, Qufu
    Journal of Power Sources, 2022, 482
  • [8] Bacterial cellulose hydrogel: A promising electrolyte for flexible zinc-air batteries
    Zhang, Yanan
    Chen, Yajun
    Li, Xin
    Alfred, Mensah
    Li, Dawei
    Huang, Fenglin
    Wei, Qufu
    JOURNAL OF POWER SOURCES, 2021, 482
  • [9] Pullulan enhanced dual-network hydrogel electrolyte for high-performance flexible zinc-ion batteries
    Wu, Runhai
    Yang, Shaopei
    Wang, Ran
    Guo, Yujia
    Du, Pengcheng
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [10] Ultra-thin amphiphilic hydrogel electrolyte for flexible zinc-ion paper batteries
    Xia, Huan
    Zhang, Wei
    Miao, Chunyang
    Chen, Hao
    Yi, Chengjie
    Shang, Yihan
    Shui, Tao
    Cao, Xin
    Liu, Jiacheng
    Kure-Chu, Song-Zhu
    Liang, Feifei
    Moloto, Nosipho
    Xiong, Yipeng
    Hihara, Takehiko
    Lu, Weibing
    Sun, ZhengMing
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (18)