Optimization of temperature parameters for the autothermic pyrolysis in-situ conversion process of oil shale

被引:6
|
作者
Xu, Shaotao [1 ,2 ]
Lue, Xiaoshu [1 ,5 ,6 ]
Sun, Youhong [1 ,2 ,4 ]
Guo, Wei [1 ,2 ]
Li, Qiang [1 ,2 ,3 ,4 ]
Liu, Lang [7 ]
Kang, Shijie [8 ]
Deng, Sunhua [1 ,2 ,3 ,4 ]
机构
[1] Jilin Univ, Coll Construct Engn, Changchun 130021, Peoples R China
[2] Jilin Univ, Natl Local Joint Engn Lab Insitu Convers Drilling, Changchun 130021, Peoples R China
[3] Jilin Univ, Key Lab, Minist Nat Resources Drilling & Exploitat Technol, Changchun 130021, Peoples R China
[4] China Univ Geosci, Beijing 100083, Peoples R China
[5] Univ Vaasa, Dept Elect Engn & Energy Technol, POB 700, FIN-65101 Vaasa, Finland
[6] Aalto Univ, Sch Engn, Dept Civil & Struct Engn, POB 12100, FIN-02015 Espoo, Finland
[7] Xian Univ Sci & Technol, Energy Sch, Xian 710054, Peoples R China
[8] Chinese Acad Sci, Ganjiang Innovat Acad, Ganzhou 341000, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Oil shale; Kinetic analysis; Combustion characteristics; Heat relationship; Temperature optimization; KEROGEN PYROLYSIS; CHEMICAL-STRUCTURE; COMBUSTION; MECHANISM; MODEL; BEHAVIOR;
D O I
10.1016/j.energy.2022.126309
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a temperature optimization strategy for the Huadian oil shale autothermal pyrolysis in-situ conversion process (ATS) was first proposed by systematically investigating the reaction characteristics of various semi-cokes. As the pyrolysis temperature rised, the semi-coke's calorific value was found to undergo three different stages of increasing, decreasing, and flattening, peaking at around 330 degrees C. Additionally, the semi-cokes formed at different temperatures exhibited similar combustion characteristics, including combustion activation energy, combustion characteristic parameters, and product release characteristics. Due to the serious pore blockage caused by the substantial generation and the ignition coking of the bitumen, the reaction characteristics of semi-cokes were dramatically decreased at about 330 degrees C. Finally, the relationship between in-situ heat generation and demand at various stages of ATS process was discussed, and a reasonable strategy for the screening of temperature parameters was proposed. According to this strategy, the optimal control temperature for the preheating stage was determined at 350-370 degrees C and at Tact (defined in 4.3.2) for the retorting zone in the reaction stage. The results of this study provide a new perspective on the theoretical foundation of the ATS process and have crucial guiding implications for practical engineering applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The autothermic pyrolysis in-situ conversion process for oil shale recovery: Effect of gas injection parameters
    Yang, Qinchuan
    Guo, Wei
    Xu, Shaotao
    Zhu, Chaofan
    ENERGY, 2023, 283
  • [2] Experimental study of the autothermic pyrolysis in-situ conversion process (ATS) for oil shale recovery
    Guo, Wei
    Yang, Qinchuan
    Deng, Sunhua
    Li, Qiang
    Sun, Youhong
    Su, Jianzheng
    Zhu, Chaofan
    ENERGY, 2022, 258
  • [3] Characterization of oxygen initiation process in the autothermic pyrolysis in-situ conversion of Huadian oil shale
    ShaoTao Xu
    XiaoShu L
    Han Wang
    YouHong Sun
    ShiJie Kang
    ZhenDong Wang
    Wei Guo
    SunHua Deng
    Petroleum Science, 2024, 21 (06) : 4481 - 4496
  • [4] Characterization of oxygen initiation process in the autothermic pyrolysis in-situ conversion of Huadian oil shale
    Xu, Shao-Tao
    Lü, Xiao-Shu
    Wang, Han
    Sun, You-Hong
    Kang, Shi-Jie
    Wang, Zhen-Dong
    Guo, Wei
    Deng, Sun-Hua
    Petroleum Science, 2024, 21 (06) : 4481 - 4496
  • [5] Mechanism and reservoir simulation study of the autothermic pyrolysis in-situ conversion process for oil shale recovery
    Wei Guo
    Qiang Li
    SunHua Deng
    Yuan Wang
    ChaoFan Zhu
    Petroleum Science, 2023, 20 (02) : 1053 - 1067
  • [6] Mechanism and reservoir simulation study of the autothermic pyrolysis in-situ conversion process for oil shale recovery
    Guo, Wei
    Li, Qiang
    Deng, Sun-Hua
    Wang, Yuan
    Zhu, Chao-Fan
    PETROLEUM SCIENCE, 2023, 20 (02) : 1053 - 1067
  • [7] Product migration and regional reaction characteristics in the autothermic pyrolysis in-situ conversion process of low-permeability Huadian oil shale core
    Xu, Shaotao
    Sun, Youhong
    Yang, Qinchuan
    Wang, Han
    Kang, Shijie
    Guo, Wei
    Shan, Xuanlong
    He, Wentong
    ENERGY, 2023, 283
  • [8] Numerical simulation analysis on the development effect of vertical well and horizontal well during oil shale autothermic pyrolysis in-situ conversion process: a case study of oil shale in Xunyi area, Ordos Basin
    Lihong Y.
    Chaofan Z.
    Hao Z.
    Jianzheng S.
    Yiwei W.
    Junwen W.
    Xudong C.
    Wei G.
    Shiyou Xuebao/Acta Petrolei Sinica, 2023, 44 (08): : 1333 - 1343
  • [9] Study on the Applicability of Autothermic Pyrolysis In Situ Conversion Process for Low-Grade Oil Shale: A Case Study of Tongchuan, Ordos Basin, China
    Ren, Dazhong
    Wang, Zhendong
    Yang, Fu
    Zeng, Hao
    Lu, Chenyuan
    Wang, Han
    Wang, Senhao
    Xu, Shaotao
    ENERGIES, 2024, 17 (13)
  • [10] Evolution of Biomarker Maturity Parameters and Feedback to the Pyrolysis Process for In Situ Conversion of Nongan Oil Shale in Songliao Basin
    Zeng, Hao
    He, Wentong
    Yang, Lihong
    Su, Jianzheng
    Meng, Xianglong
    Cen, Xueqi
    Guo, Wei
    ENERGIES, 2022, 15 (10)