An Incipient Fault Diagnosis Method Based on Complex Convolutional Self-Attention Autoencoder for Analog Circuits

被引:3
|
作者
Gao, Tianyu [1 ]
Yang, Jingli [1 ]
Jiang, Shouda [1 ]
Li, Ye [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Circuit faults; Analog circuits; Fault diagnosis; Feature extraction; Training; Convolution; Time-frequency analysis; complex convolutional self-attention autoencoder (CCSAE); fault diagnosis; supervised contrast loss (SCL); PROGNOSTICS;
D O I
10.1109/TIE.2023.3310075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the extensive application of analog circuits in many electronic devices, it is important to achieve accurate alerts in the incipient fault stage of analog circuits to reduce the threat on their reliability. However, the faint nature of incipient faults and the tolerance of components lead identifying incipient faults as a huge research challenge. Consequently, a complex convolutional self-attention autoencoder (CCSAE) is proposed in this paper to perform incipient fault diagnosis for analog circuits, which contains a feature extraction module, a feature enhancement module, and a classification module. In the first module, a backbone based on the complex convolutional autoencoder (CCAE) is designed to provide effective feature representations containing the amplitude information and phase information of analog circuit responses. In the feature enhancement module, a complex self-attention layer is constructed to enhance the useful structural information for feature representations by capturing internal correlations, thus addressing the faint nature of incipient faults. Finally, a two-step training mechanism including feature training and classification training is designed for CCSAE, where the key operation is the construction of supervised contrast loss (SCL) to pull closer similar feature representations and push away dissimilar ones. To demonstrate the effectiveness and merits of the proposed method, a typical Sallen-Key bandpass filter circuit and an actual amplifier board circuit of the water jet propulsion device are considered as experimental circuits. The experimental results indicate that this method achieves an average accuracy of 99.92% in the former and 98.25% in the latter, which is superior to other excellent methods.
引用
收藏
页码:9727 / 9736
页数:10
相关论文
共 50 条
  • [1] A fault diagnosis algorithm for analog circuits based on self-attention mechanism deep learning
    Yang D.
    Wei J.
    Lin X.
    Liu M.
    Lu S.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (03): : 128 - 136
  • [2] GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis
    Lee, Daehee
    Choo, Hyunseung
    Jeong, Jongpil
    SENSORS, 2024, 24 (15)
  • [3] Incipient fault diagnosis of analog circuits based on wavelet transform and improved deep convolutional neural network
    Yang, Yueyi
    Wang, Lide
    Nie, Xiaobo
    Wang, Yin
    IEICE ELECTRONICS EXPRESS, 2021, 18 (13): : 1 - 6
  • [4] A self-attention based contrastive learning method for bearing fault diagnosis
    Cui, Long
    Tian, Xincheng
    Wei, Qingzhe
    Liu, Yan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [5] Self-attention convolutional neural network based fault diagnosis algorithm for chemical process
    Ren Jia
    Zou Hongrui
    Tang Lijuan
    Sun Siyu
    Shen Qihao
    Wang Xiang
    Bao Ke
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4046 - 4051
  • [6] Bearing Fault Detection Based on Convolutional Self-Attention Mechanism
    Ye, Ruida
    Wang, Weijie
    Ren, Yuan
    Zhang, Keming
    PROCEEDINGS OF 2020 IEEE 2ND INTERNATIONAL CONFERENCE ON CIVIL AVIATION SAFETY AND INFORMATION TECHNOLOGY (ICCASIT), 2020, : 869 - 873
  • [7] A health indicator construction method based on self-attention convolutional autoencoder for rotating machine performance assessment
    Ma, Weipeng
    Guo, Liang
    Gao, Hongli
    Yu, Yaoxiang
    Qian, Mengui
    MEASUREMENT, 2022, 204
  • [8] Bearing fault diagnosis network based on adaptive dimension-increasing and convolutional self-attention
    Guan, Le
    Wang, Xinyang
    Yang, Duo
    Zhang, Tianqi
    Zhu, Li
    Chen, Jianguo
    Wang, Zhen
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (17): : 289 - 299
  • [9] A novel intelligent fault diagnosis method of bearing based on multi-head self-attention convolutional neural network
    Ren, Hang
    Liu, Shaogang
    Qiu, Bo
    Guo, Hong
    Zhao, Dan
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2024, 38
  • [10] Fault Diagnosis Method for Centrifugal Pumps in Nuclear Power Plants Based on a Multi-Scale Convolutional Self-Attention Network
    Li, Chen
    Liu, Xinkai
    Wang, Hang
    Peng, Minjun
    Sensors, 2025, 25 (05)