Effect of zero-valent iron nanoparticles on taxonomic composition and hydrogen production from kitchen waste

被引:6
|
作者
Luo, Lijun [1 ]
Mak, Ka Lee [1 ]
Mal, Joyabrata [2 ]
Khanal, Samir Kumar [3 ]
Pradhan, Nirakar [1 ]
机构
[1] Hong Kong Baptist Univ, Fac Sci, Dept Biol, Kowloon Tong, Hong Kong, Peoples R China
[2] Motilal Nehru Natl Inst Technol Allahabad, Dept Biotechnol, Prayagraj 211004, Uttar Pradesh, India
[3] Univ Hawaii Manoa, Dept Mol Biosci & Bioengn, Honolulu, HI 96822 USA
关键词
Carbon-free energy carrier; Acidogenesis; Clostridium sensu stricto 1; Metalloenzymes; Hydrogenase; BIOHYDROGEN PRODUCTION; OXIDE NANOPARTICLES; ANAEROBIC-DIGESTION; METHANE PRODUCTION; DARK FERMENTATION; FOOD WASTE; ENHANCEMENT; SLUDGE; THERMOTOGA; HEMATITE;
D O I
10.1016/j.biortech.2023.129578
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study investigated the effects of varying zero-valent iron (ZVI) (0 to 5,000 mg/L) on fermentative hydrogen (H2) production, metabolic pattern, and taxonomic profile by using kitchen waste as substrate. The study demonstrated that the supplementation of 500 mg ZVI/L resulted in the highest H2 yield (219.68 & PLUSMN; 11.19 mL H2/g-volatile solids (VS)added), which was 19% higher than the control. The metabolic pattern analysis showed that acetic and butyric acid production primarily drove the H2 production. The taxonomic analysis further revealed that Firmicutes (relative abundance (RA): 80-96%) and Clostridium sensu stricto 1 (RA: 68-88%) were the dominant phyla and genera, respectively, during the exponential gas production phase, supporting the observation of accumulation of acetic and butyric acids. These findings suggest that supplementation of ZVI can enhance H2 production from organic waste and significantly influence the metabolic pattern and taxonomic profile, including the metalloenzymes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The effect of adding zero-valent iron nanoparticles on biohydrogen production from refectory waste
    Gokcek, Oznur Begum
    Erdogmus, Safak Nur
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 337 - 348
  • [2] The Effect of Zero-Valent Iron Nanoparticles (nZVI) on Bacteriophages
    Raza, Sada
    Folga, Michal
    Los, Marcin
    Foltynowicz, Zenon
    Paczesny, Jan
    [J]. VIRUSES-BASEL, 2022, 14 (05):
  • [3] Characterization of zero-valent iron nanoparticles
    Sun, Yuan-Pang
    Li, Xiao-qin
    Cao, Jiasheng
    Zhang, Wei-xian
    Wang, H. Paul
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2006, 120 (1-3) : 47 - 56
  • [4] Zero-valent iron nanoparticles preparation
    Oropeza, S.
    Corea, M.
    Gomez-Yanez, C.
    Cruz-Rivera, J. J.
    Navarro-Clemente, M. E.
    [J]. MATERIALS RESEARCH BULLETIN, 2012, 47 (06) : 1478 - 1485
  • [5] Enhanced dark fermentative hydrogen production under the effect of zero-valent iron shavings
    Zhu, Heguang
    Seto, Peter
    Parker, Wayne J.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (33) : 19331 - 19336
  • [6] Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli
    Lee, Changha
    Kim, Jee Yeon
    Lee, Won Il
    Nelson, Kara L.
    Yoon, Jeyong
    Sedlak, David L.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (13) : 4927 - 4933
  • [7] Effect of Surfactants on Zero-Valent Iron Nanoparticles (NZVI) Reactivity
    Wang, Ziheng
    Choi, Francis
    Acosta, Edgar
    [J]. JOURNAL OF SURFACTANTS AND DETERGENTS, 2017, 20 (03) : 577 - 588
  • [8] Use of carbon-encapsulated zero-valent iron nanoparticles from waste biomass to hydrogen sulphide wet removal
    Passalacqua, Elena
    Correcher, Ruben
    Mantovani, Marco
    Collina, Elena
    Fullana, Andres
    [J]. WASTE MANAGEMENT & RESEARCH, 2024,
  • [9] Utilization of food industry wastes for the production of zero-valent iron nanoparticles
    Machado, S.
    Grosso, J. P.
    Nouws, H. P. A.
    Albergaria, J. T.
    Delerue-Matos, C.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 496 : 233 - 240
  • [10] Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles
    Yang, Guang
    Wang, Jianlong
    [J]. BIORESOURCE TECHNOLOGY, 2018, 266 : 413 - 420