Thermal annealing effects on the mechanical properties of bio-based 3D printed thermosets

被引:3
|
作者
Cortes-Guzman, Karen P. [1 ]
Parikh, Ankit R. [2 ]
Sparacin, Marissa L. [1 ]
Johnson, Rebecca M. [1 ]
Adegoke, Lauren [4 ]
Ecker, Melanie [4 ]
Voit, Walter E. [2 ,3 ]
Smaldone, Ronald A. [1 ,3 ]
机构
[1] Univ Texas Dallas, Dept Chem & Biochem, 800 West Campbell Rd, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Mech Engn, 800 West Campbell Rd, Richardson, TX 75080 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, 800 West Campbell Rd, Richardson, TX 75080 USA
[4] Univ North Texas, Dept Biomed Engn, 1155 Union Circle 310440, Denton, TX 75203 USA
关键词
EPOXY VITRIMERS; CROSS-LINKING; VANILLIN; TRANSESTERIFICATION; POLYMER; TEMPERATURE; RESIN; OIL;
D O I
10.1039/d3py00200d
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
3D printing technologies can address many sustainability aspects of creating new materials, such as reduced waste and on demand production, which reduces the carbon footprint of transport and storage. Additionally, creating bio-based resins for 3D printing is a viable way of improving the sustainability of polymeric materials. Coupled with this, by using dynamic covalent chemistry (DCC), we can provide materials with smart properties like self-healing or reprocessability to either extend their usable lifetime or provide an alternative to the materials ending up in a landfill. Here, we report a series of completely bio-based aromatic resins for digital light projection (DLP) printing. By incorporating beta-hydroxyesters and a zinc catalyst, the polymer networks can participate in transesterification reactions to provide self-healing capabilities or reprocessability. The self-healing abilities of these materials were characterized using optical microscopy, and the reprocessability using a hot-press. Additionally, by subjecting the printed thermosets to thermal annealing, considerable changes in the mechanical performance were observed leading to more than a 2000% increase in the Young's modulus. The thermal behavior after annealing was also studied and a discussion on the effect of the structural differences between the aromatic monomers is proposed. These resin formulations address two of the key goals of sustainable materials: using renewable resources and obtaining recyclable materials while remaining competitive through their mechanical performance and compatibility with 3D printing technologies.
引用
收藏
页码:2697 / 2707
页数:11
相关论文
共 50 条
  • [1] Mechanical and Thermal Properties of 3D-Printed Thermosets by Stereolithography
    Park, Sungmin
    Smallwood, Anna M.
    Ryu, Chang Y.
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2019, 32 (02) : 227 - 232
  • [2] Annealing effect on mechanical properties of 3D printed composites
    Valvez, S.
    Silva, A. P.
    Reis, P. N. B.
    Berto, F.
    4TH INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY (ICSI 2021), 2022, 37 : 738 - 745
  • [3] Mechanical and Thermal Properties of 3D Printed Polycarbonate
    Bahar, Anis
    Belhabib, Sofiane
    Guessasma, Sofiane
    Benmahiddine, Ferhat
    Hamami, Ameur El Amine
    Belarbi, Rafik
    ENERGIES, 2022, 15 (10)
  • [4] Tannic acid based bio-based epoxy thermosets: Evaluation of thermal, mechanical, and biodegradable behaviors
    Borah, Nobomi
    Karak, Niranjan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (11)
  • [5] Enhancing mechanical properties of 3D printed thermoplastic polymers by annealing in moulds
    Vorkapic, Milos
    Mladenovic, Ivana
    Ivanov, Toni
    Kovacevic, Aleksandar
    Hasan, Mohammad Sakib
    Simonovic, Aleksandar
    Trajkovic, Isaak
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (08)
  • [6] Bio-based furan coatings: adhesion, mechanical and thermal properties
    Roghayyeh Marefat Seyedlar
    Mohammad Imani
    Seyed Mojtaba Mirabedini
    Polymer Bulletin, 2021, 78 : 577 - 599
  • [7] Bio-based furan coatings: adhesion, mechanical and thermal properties
    Seyedlar, Roghayyeh Marefat
    Imani, Mohammad
    Mirabedini, Seyed Mojtaba
    POLYMER BULLETIN, 2021, 78 (02) : 577 - 599
  • [8] Effects of annealing on the mechanical, thermal, and physical properties of 3D-printed PLA aged in salt water
    Tejedor, Jennifer
    Cevallos, Pablo D.
    Coro, Eduardo S.
    Ponton, Patricia I.
    Guaman, Marco
    Guerrero, Victor H.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [10] Effects of Bio-based Plasticizers on Mechanical and Thermal Properties of PVC/Wood Flour Composites
    Xie, Zhenhua
    Chen, Ying
    Wang, Chunpeng
    Liu, Yupeng
    Chu, Fuxiang
    Jin, Liwei
    BIORESOURCES, 2014, 9 (04): : 7389 - 7402