A generalization of Piatetski-Shapiro sequences (II)

被引:0
|
作者
Li, Jinjiang [1 ]
Qi, Jinyun [2 ]
Zhang, Min [3 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Xian Univ, Sch Informat Engn, Xian 710065, Shaanxi, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Beatty sequence; Piatetski-Shapiro sequences; Arithmetic progression; Exponential sums;
D O I
10.1007/s13226-024-00532-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that alpha, beta is an element of R. Let alpha >= 1 and c be a real number in the range 1 < c < 12/11. In this paper, it is proved that there exist infinitely many primes in the generalized Piatetski--Shapiro sequence, which is defined by ([alpha n(c)+ beta])(n=1)(infinity). Moreover, we also prove that there exist infinitely many Carmichael numbers composed entirely of primes from the generalized Piatetski--Shapiro sequences with c is an element of(1,(19137)/(18746)). The two theorems constitute improvements upon previous results by Guo and Qi [5].
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Generalization of Piatetski-Shapiro Sequences
    Guo, Victor Zhenyu
    Qi, Jinyun
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (01): : 33 - 47
  • [2] kth powers in a generalization of Piatetski-Shapiro sequences
    Shen, Yukai
    AIMS MATHEMATICS, 2023, 8 (09): : 22411 - 22418
  • [3] Piatetski-Shapiro sequences
    Baker, Roger C.
    Banks, William D.
    Bruedern, Joerg
    Shparlinski, Igor E.
    Weingartner, Andreas J.
    ACTA ARITHMETICA, 2013, 157 (01) : 37 - 68
  • [4] ON SQUARES IN PIATETSKI-SHAPIRO SEQUENCES
    Zhang, Wei
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2021, 65 (02) : 227 - 236
  • [5] Squares in Piatetski-Shapiro sequences
    Liu, Kui
    Shparlinski, Igor E.
    Zhang, Tianping
    ACTA ARITHMETICA, 2017, 181 (03) : 239 - 252
  • [6] THE INTERSECTION OF PIATETSKI-SHAPIRO SEQUENCES
    Baker, Roger C.
    MATHEMATIKA, 2014, 60 (02) : 347 - 362
  • [7] kth powers in Piatetski-Shapiro sequences
    Qi, Jinyun
    Guo, Victor Zhenyu
    Xu, Zhefeng
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (08) : 1791 - 1806
  • [8] Piatetski-Shapiro sequences via Beatty sequences
    Spiegelhofer, Lukas
    ACTA ARITHMETICA, 2014, 166 (03) : 201 - 229
  • [9] Almost primes in Piatetski-Shapiro sequences
    Guo, Victor Zhenyu
    AIMS MATHEMATICS, 2021, 6 (09): : 9536 - 9546
  • [10] A sequences analog of the Piatetski-Shapiro problem
    Rivat, J
    Sarkozy, A
    ACTA MATHEMATICA HUNGARICA, 1997, 74 (03) : 245 - 260