Study of Cosmic Ray Primary Mass Composition Using Monte Carlo Simulation and Statistical Methods

被引:0
|
作者
Das, Prity Rekha [1 ]
Boruah, Kalyanee [1 ]
机构
[1] Gauhati Univ, Dept Phys, Gauhati 781014, Assam, India
关键词
Cosmic rays; HAGAR; Monte Carlo simulation; CORSIKA; MTA; GAMMA-RAY; ENERGY; PARAMETERS;
D O I
10.1007/s13538-023-01398-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tracing of cosmic ray origin and building a detailed and comprehensive idea about the sources are very much dependent on measurement of cosmic ray primary mass composition. High-energy cosmic rays produce extensive air showers in the earth's atmosphere, which in turn produce visible Cherenkov light. Distribution of Cherenkov photons over the observation level may be correlated with primary mass composition. This work aims to analyze the lateral density distribution of atmospheric Cherenkov light for various primary particles over a wide energy range (100 GeV-1 TeV) as well as to parameterize the obtained distributions using Monte Carlo simulation method. The simulations are carried out with CORSIKA (COsmic Ray SImulations for KAscade) 6.990 code. We have defined a new asymmetry parameter suitable for identifying primary mass composition. This parameter and the total number of Cherenkov photons are found to be sensitive in analyzing simulated data using a statistical method, called multiparametric topological analysis (MTA).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Study of Cosmic Ray Primary Mass Composition Using Monte Carlo Simulation and Statistical Methods
    Prity Rekha Das
    Kalyanee Boruah
    Brazilian Journal of Physics, 2024, 54
  • [2] Monte Carlo simulation of air shower development for the study of cosmic ray composition
    Shirasaki, Y
    Kakimoto, F
    ASTROPARTICLE PHYSICS, 2001, 15 (03) : 241 - 257
  • [3] Study of the primary cosmic ray mass composition using gamma rays
    Kopenkin, V.
    Fujimoto, Y.
    ASTRONOMY & ASTROPHYSICS, 2007, 466 (03) : 1211 - 1217
  • [4] Backward Simulation Methods for Monte Carlo Statistical Inference
    Lindsten, Fredrik
    Schon, Thomas B.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2013, 6 (01): : 1 - 143
  • [5] Efficient Monte Carlo simulation methods in statistical physics
    Wang, JS
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 141 - 157
  • [6] Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons
    Nishiyama, Ryuichi
    Taketa, Akimichi
    Miyamoto, Seigo
    Kasahara, Katsuaki
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (02) : 1039 - 1050
  • [7] MONTE CARLO METHODS - METHODS STATISTICAL TESTING/MONTE CARLO METHOD
    MULLER, ME
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (02): : 532 - &
  • [8] Comparison of statistical enhancement methods for Monte Carlo semiconductor simulation
    Wordelman, CJ
    Kwan, TJT
    Snell, CM
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1998, 17 (12) : 1230 - 1235
  • [9] MONTE-CARLO SIMULATION OF THE HEGRA COSMIC-RAY DETECTOR PERFORMANCE
    MARTINEZ, S
    ARQUEROS, F
    FONSECA, V
    KARLE, A
    LORENZ, E
    PLAGA, R
    ROZANSKA, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 357 (2-3): : 567 - 579
  • [10] Evaluation of solar proton spectra using balloon cosmic ray observations and Monte Carlo simulation results
    Makhmutov, V. S.
    Desorgher, L.
    Bazilevskaya, G. A.
    Flueckiger, E.
    Raulin, J. -P.
    ADVANCES IN SPACE RESEARCH, 2007, 39 (09) : 1458 - 1461