A foreground-immune CMB-cluster lensing estimator

被引:3
|
作者
Levy, Kevin [1 ,2 ]
Raghunathan, Srinivasan [3 ]
Basu, Kaustuv [2 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany
[3] Natl Ctr Supercomp Applicat, Ctr Astrophys Surveys, Urbana, IL 61801 USA
关键词
CMBR experiments; galaxy clusters; weak gravitational lensing; MASSIVE GALAXY CLUSTERS; TEMPERATURE; VELOCITY; MASSES;
D O I
10.1088/1475-7516/2023/08/020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Galaxy clusters induce a distinct dipole pattern in the cosmic microwave back-ground (CMB) through the effect of gravitational lensing. Extracting this lensing signal will enable us to constrain cluster masses, even for high redshift clusters (z >= 1) that are expected to be detected by future CMB surveys. However, cluster-correlated foreground signals, like the kinematic and thermal Sunyaev-Zel'dovich (kSZ and tSZ) signals, present a challenge when extracting the lensing signal from CMB temperature data. While CMB polarization -based lensing reconstruction is one way to mitigate these foreground biases, the sensitivity from CMB temperature-based reconstruction is expected to be similar to or higher than po-larization for future surveys. In this work, we extend the cluster lensing estimator developed in [1] to CMB temperature and test its robustness against systematic biases from foreground signals. We find that the kSZ signal only acts as an additional source of variance and provide a simple stacking-based approach to mitigate the bias from the tSZ signal. Additionally, we study the bias induced due to uncertainties in the cluster positions and show that they can be easily mitigated. The estimated signal-to-noise ratio (SNR) of this estimator is comparable to other standard lensing estimators such as the maximum likelihood (MLE) and quadratic (QE) estimators. We predict the cluster mass uncertainties from CMB temperature data for current and future cluster samples to be: 6.6% for SPT-3G with 7,000 clusters, 4.1% for SO and 3.9% for SO + FYST with 25,000 clusters, and 1.8% for CMB-S4 with 100,000 clusters.
引用
收藏
页数:24
相关论文
共 34 条
  • [1] Foreground-immune CMB lensing reconstruction with polarization
    Sailer, Noah
    Ferraro, Simone
    Schaan, Emmanuel
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [2] CMB-cluster lensing
    Dodelson, S
    PHYSICAL REVIEW D, 2004, 70 (02): : 023009 - 1
  • [3] Detection of CMB-Cluster Lensing using Polarization Data from SPTpol
    Raghunathan, S.
    Patil, S.
    Baxter, E.
    Benson, B. A.
    Bleem, L. E.
    Crawford, T. M.
    Holder, G. P.
    McClintock, T.
    Reichardt, C. L.
    Varga, T. N.
    Whitehorn, N.
    Ade, P. A. R.
    Allam, S.
    Anderson, A. J.
    Austermann, J. E.
    Avila, S.
    Avva, J. S.
    Bacon, D.
    Beall, J. A.
    Bender, A. N.
    Bianchini, F.
    Bocquet, S.
    Brooks, D.
    Burke, D. L.
    Carlstrom, J. E.
    Carretero, J.
    Castander, F. J.
    Chang, C. L.
    Chiang, H. C.
    Citron, R.
    Costanzi, M.
    Crites, A. T.
    da Costa, L. N.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Dobbs, M. A.
    Doel, P.
    Everett, S.
    Evrard, A. E.
    Feng, C.
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Gallicchio, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    George, E. M.
    Giannantonio, T.
    Gilbert, A.
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [4] Suppressing the Thermal SZ-induced Variance in CMB-cluster Lensing Estimators
    Patil, Sanjaykumar
    Raghunathan, Srinivasan
    Reichardt, Christian L.
    ASTROPHYSICAL JOURNAL, 2020, 888 (01):
  • [5] Foreground-Immune Cosmic Microwave Background Lensing with Shear-Only Reconstruction
    Schaan, Emmanuel
    Ferraro, Simone
    PHYSICAL REVIEW LETTERS, 2019, 122 (18)
  • [6] Rotation of the CMB polarization by foreground lensing
    Di Dio, Enea
    Durrer, Ruth
    Fanizza, Giuseppe
    Marozzi, Giovanni
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [7] An inpainting approach to tackle the kinematic and thermal SZ induced biases in CMB-cluster lensing estimators
    Raghunathan, Srinivasan
    Holder, Gilbert P.
    Bartlett, James G.
    Patil, SanjayKumar
    Reichardt, Christian L.
    Whitehorn, Nathan
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (11):
  • [8] Cluster lensing of the CMB
    Vale, C
    Amblard, A
    White, M
    NEW ASTRONOMY, 2004, 10 (01) : 1 - 15
  • [9] Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data
    Raghunathan, S.
    Patil, S.
    Baxter, E.
    Benson, B. A.
    Bleem, L. E.
    Chou, T. L.
    Crawford, T. M.
    Holder, G. P.
    McClintock, T.
    Reichardt, C. L.
    Rozo, E.
    Varga, T. N.
    Abbott, T. M. C.
    Ade, P. A. R.
    Allam, S.
    Anderson, A. J.
    Annis, J.
    Austermann, J. E.
    Avila, S.
    Beall, J. A.
    Bechtol, K.
    Bender, A. N.
    Bernstein, G.
    Bertin, E.
    Bianchini, F.
    Brooks, D.
    Burke, D. L.
    Carlstrom, J. E.
    Carretero, J.
    Chang, C. L.
    Chiang, H. C.
    Cho, H-M.
    Citron, R.
    Crites, A. T.
    Cunha, C. E.
    da Costa, L. N.
    Davis, C.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Dobbs, M. A.
    Doel, P.
    Eifler, T. F.
    Everett, W.
    Evrard, A. E.
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Gallicchio, J.
    Garcia-Bellido, J.
    ASTROPHYSICAL JOURNAL, 2019, 872 (02):
  • [10] Mitigating foreground bias to the CMB lensing power spectrum for a CMB-HD survey
    Han, Dongwon
    Sehgal, Neelima
    PHYSICAL REVIEW D, 2022, 105 (08)