Mid-infrared spectroscopy and machine learning for postconsumer plastics recycling

被引:7
|
作者
Stavinski, Nicholas [1 ]
Maheshkar, Vaishali [2 ]
Thomas, Sinai [1 ]
Dantu, Karthik [2 ]
Velarde, Luis [1 ]
机构
[1] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
来源
ENVIRONMENTAL SCIENCE-ADVANCES | 2023年 / 2卷 / 08期
基金
美国国家科学基金会;
关键词
MARINE DEBRIS; SPECTRA; IDENTIFICATION; POLYETHYLENE; INGESTION; POLYMERS; MIR; IR;
D O I
10.1039/d3va00111c
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Materials recovery facilities (MRFs) require new automated technologies if growing recycling demands are to be met. Current optical screening devices use visible (VIS) and near-infrared (NIR) wavelengths, frequency ranges that can experience challenges during the characterization of postconsumer plastic waste (PCPW) because of the overly-absorbing spectral bands from dyes and other polymer additives. Technological bottlenecks such as these contribute to 91% of plastic waste never actually being recycled. The mid-infrared (MIR) region has attracted recent attention due to inherent advantages over the VIS and NIR. The fundamental vibrational modes found therein make MIR frequencies promising for high fidelity machine learning (ML) classification. To-date, there are no ML evaluations of extensive MIR spectral datasets reflecting PCPW that would be encountered at MRFs. This study establishes quantifiable metrics, such as model accuracy and prediction time, for classification of a comprehensive MIR database consisting of five PCPW classes that are of economic interest: polyethylene terephthalate (PET #1), high-density polyethylene (HDPE #2), low-density polyethylene (LDPE #4), polypropylene (PP #5), and polystyrene (PS #6). Autoencoders, an unsupervised ML algorithm, were applied to the random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), and logistic regression (LR) models. The RF model achieved accuracies of 100.0% in both the C-H stretching region (2990-2820 cm(-1)) and molecular fingerprint region (1500-650 cm(-1)). The C-H stretching region was found to be free from additives that were responsible for misclassification in other regions, making it a fruitful frequency range for future PCPW sorting technologies. The MIR classification of black plastics and polyethylene PCPW using ML autoencoders was also evaluated for the first time.
引用
收藏
页码:1099 / 1109
页数:11
相关论文
共 50 条
  • [1] Mid-infrared spectroscopic fingerprinting for plastics identification and recycling
    Tinney, CE
    Thomson, B
    Johnson, E
    SPECTROSCOPY, 1996, 11 (06) : 50 - 53
  • [2] Soil Urea Analysis Using Mid-Infrared Spectroscopy and Machine Learning
    Haritha, J.
    Valarmathi, R. S.
    Kalamani, M.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03): : 1867 - 1880
  • [3] Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy
    Zhihao Ren
    Zixuan Zhang
    Jingxuan Wei
    Bowei Dong
    Chengkuo Lee
    Nature Communications, 13
  • [4] Online Characterization of Mixed Plastic Waste Using Machine Learning and Mid-Infrared Spectroscopy
    Long, Fei
    Jiang, Shengli
    Adekunle, Adeyinka Gbenga
    Zavala, Victor M.
    Bar-Ziv, Ezra
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (48) : 16064 - 16069
  • [5] Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy
    Ren, Zhihao
    Zhang, Zixuan
    Wei, Jingxuan
    Dong, Bowei
    Lee, Chengkuo
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Human serum mid-infrared spectroscopy combined with machine learning algorithms for rapid detection of gliomas
    Chen, Fangfang
    Meng, Chunzhi
    Qu, Hanwen
    Cheng, Chen
    Chen, Chen
    Yang, Bo
    Gao, Rui
    Lv, Xiaoyi
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2021, 35
  • [7] Mid-infrared upconversion spectroscopy
    Tidemand-Lichtenberg, P.
    Dam, J. S.
    Andersen, H. V.
    Hogstedt, L.
    Pedersen, C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (11) : D28 - D35
  • [8] Authentication and Provenance of Walnut Combining Fourier Transform Mid-Infrared Spectroscopy with Machine Learning Algorithms
    Zhu, Hongyan
    Xu, Jun-Li
    MOLECULES, 2020, 25 (21):
  • [9] A Single Wavelength Mid-Infrared Photoacoustic Spectroscopy for Noninvasive Glucose Detection Using Machine Learning
    Aloraynan, Abdulrahman
    Rassel, Shazzad
    Xu, Chao
    Ban, Dayan
    BIOSENSORS-BASEL, 2022, 12 (03):
  • [10] Biopolymers in the Existing Postconsumer Plastics Recycling Stream
    David D. Cornell
    Journal of Polymers and the Environment, 2007, 15 : 295 - 299