On the Moore-Gibson-Thompson Equation with Memory with Nonconvex Kernels

被引:6
|
作者
Conti, Monica [1 ]
Liverani, Lorenzo [1 ]
Pata, Vittorino [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
MGT equation with memory; nonconvex memory kernel; existence and uniqueness of solutions; exponential decay of the energy; PROPAGATION; DECAY;
D O I
10.1512/iumj.2023.72.9330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the MGT equation with memory partial derivative(ttt)u + alpha partial derivative(tt)u - beta Delta partial derivative(t)u - gamma Delta u + integral(t)(0) g(s)Delta u(t - s) ds = 0. We prove an existence and uniqueness result removing the convexity assumption on the convolution kernel g, usually adopted in the literature. In the subcritical case alpha beta > gamma, we establish the exponential decay of the energy, without leaning on the classical differential inequality involving g and its derivative g', namely, g' + delta g <= 0, delta > 0, but we ask only that g vanish exponentially fast.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [1] The Moore-Gibson-Thompson equation with memory in the critical case
    Dell'Oro, Filippo
    Lasiecka, Irena
    Pata, Vittorino
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4188 - 4222
  • [2] DECAY RATES FOR THE MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY
    Bounadja, Hizia
    Houari, Belkacem Said
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 431 - 460
  • [3] ON THE REGULARIZED MOORE-GIBSON-THOMPSON EQUATION
    Dell'oro, Filippo
    Liverani, Lorenzo
    Pata, Vittorino
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (09): : 2326 - 2338
  • [4] A note on the Moore-Gibson-Thompson equation with memory of type II
    Dell'Oro, Filippo
    Lasiecka, Irena
    Pata, Vittorino
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1251 - 1268
  • [5] General Decay of the Cauchy Problem for a Moore-Gibson-Thompson Equation with Memory
    Lacheheb, Ilyes
    Messaoudi, Salim A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [6] New general decay results for a Moore-Gibson-Thompson equation with memory
    Liu, Wenjun
    Chen, Zhijing
    Chen, Dongqin
    APPLICABLE ANALYSIS, 2020, 99 (15) : 2622 - 2640
  • [7] Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach
    Alves, M. O.
    Caixeta, A. H.
    Jorge Silva, M. A.
    Rodrigues, J. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [8] Spatial Behaviour of Solutions of the Moore-Gibson-Thompson Equation
    Ostoja-Starzewski, M.
    Quintanilla, R.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (04)
  • [9] Global solvability of Moore-Gibson-Thompson equation with memory arising in nonlinear acoustics
    Lasiecka, Irena
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) : 411 - 441
  • [10] Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy
    Lasiecka, Irena
    Wang, Xiaojun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):