Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2: a machine learning approach- a retrospective cohort study

被引:5
|
作者
Young, Dylan [1 ,2 ,3 ]
Houshmand, Bita [1 ,2 ,3 ]
Tan, Chunyi Christie [4 ]
Kirubarajan, Abirami [5 ]
Parbhakar, Ashna [4 ]
Dada, Jazleen [6 ]
Whittle, Wendy [6 ,7 ]
Sobel, Mara L. L. [6 ,7 ]
Gomez, Luis M. M. [8 ]
Ruediger, Mario [9 ]
Pecks, Ulrich [10 ]
Oppelt, Peter [11 ]
Ray, Joel G. G. [4 ,12 ]
Hobson, Sebastian R. R. [6 ,7 ]
Snelgrove, John W. W. [6 ,7 ]
D'Souza, Rohan [6 ,7 ,13 ]
Kashef, Rasha [1 ,2 ,3 ]
Sussman, Dafna [1 ,2 ,3 ,6 ]
机构
[1] Toronto Metropolitan Univ, Ryerson Univ, Dept Elect Comp & Biomed Engn, 350 Victoria St, Toronto, ON M5B 0A1, Canada
[2] Toronto Metropolitan Univ, St Michaels Hosp, Inst Biomed Engn Sci & Technol iBEST, Toronto, ON, Canada
[3] St Michaels Hosp, Keenan Res Ctr Biomed Sci, Toronto, ON, Canada
[4] Univ Toronto, Temerty Fac Med, MD Program, Toronto, ON, Canada
[5] McMaster Univ, Dept Obstet & Gynecol, Hamilton, ON, Canada
[6] Univ Toronto, Fac Med, Dept Obstet & Gynaecol, Toronto, ON, Canada
[7] Mt Sinai Hosp, Dept Obstet & Gynaecol, Toronto, ON, Canada
[8] INOVA Hlth Syst, Dept Obstet & Gynecol, Div Maternal Fetal Med, Falls Church, VA USA
[9] Tech Univ Dresden, Saxony Ctr Feto Neonatal Hlth, Med Fak, Dresden, Germany
[10] Univ Hosp Schleswig Holstein, Dept Obstet & Gynaecol, Kiel, Germany
[11] Johannes Kepler Univ Linz, Kepler Univ Hosp Linz, Dept Gynecol Obstet & Gynecol Endocrinol, Altenberger Str 69, A-4040 Linz, Austria
[12] St Michaels Hosp, Dept Obstet & Gynaecol, Toronto, ON, Canada
[13] McMaster Univ, Dept Obstet & Gynaecol & Hlth Res Methods Evidence, Hamilton, ON, Canada
关键词
Machine learning; Prognostication; Pregnancy; SARS-CoV-2; COVID-19; COVID-19; INFECTION; REGRESSION; MORTALITY; MODEL;
D O I
10.1186/s12884-023-05679-2
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
BackgroundPregnant people are particularly vulnerable to SARS-CoV-2 infection and to ensuing severe illness. Predicting adverse maternal and perinatal outcomes could aid clinicians in deciding on hospital admission and early initiation of treatment in affected individuals, streamlining the triaging processes.MethodsAn international repository of 1501 SARS-CoV-2-positive cases in pregnancy was created, consisting of demographic variables, patient comorbidities, laboratory markers, respiratory parameters, and COVID-19-related symptoms. Data were filtered, preprocessed, and feature selection methods were used to obtain the optimal feature subset for training a variety of machine learning models to predict maternal or fetal/neonatal death or critical illness.ResultsThe Random Forest model demonstrated the best performance among the trained models, correctly identifying 83.3% of the high-risk patients and 92.5% of the low-risk patients, with an overall accuracy of 89.0%, an AUC of 0.90 (95% Confidence Interval 0.83 to 0.95), and a recall, precision, and F1 score of 0.85, 0.94, and 0.89, respectively. This was achieved using a feature subset of 25 features containing patient characteristics, symptoms, clinical signs, and laboratory markers. These included maternal BMI, gravidity, parity, existence of pre-existing conditions, nicotine exposure, anti-hypertensive medication administration, fetal malformations, antenatal corticosteroid administration, presence of dyspnea, sore throat, fever, fatigue, duration of symptom phase, existence of COVID-19-related pneumonia, need for maternal oxygen administration, disease-related inpatient treatment, and lab markers including sFLT-1/PlGF ratio, platelet count, and LDH.ConclusionsWe present the first COVID-19 prognostication pipeline specifically for pregnant patients while utilizing a large SARS-CoV-2 in pregnancy data repository. Our model accurately identifies those at risk of severe illness or clinical deterioration, presenting a promising tool for advancing personalized medicine in pregnant patients with COVID-19.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2: a machine learning approach- a retrospective cohort study
    Dylan Young
    Bita Houshmand
    Chunyi Christie Tan
    Abirami Kirubarajan
    Ashna Parbhakar
    Jazleen Dada
    Wendy Whittle
    Mara L. Sobel
    Luis M. Gomez
    Mario Rüdiger
    Ulrich Pecks
    Peter Oppelt
    Joel G. Ray
    Sebastian R. Hobson
    John W. Snelgrove
    Rohan D’Souza
    Rasha Kashef
    Dafna Sussman
    [J]. BMC Pregnancy and Childbirth, 23
  • [2] Commentary: Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2 by a machine learning approach
    Noemi Salmeri
    Massimo Candiani
    Paolo Ivo Cavoretto
    [J]. BMC Pregnancy and Childbirth, 23
  • [3] Commentary: Predicting adverse outcomes in pregnant patients positive for SARS-CoV-2 by a machine learning approach
    Salmeri, Noemi
    Candiani, Massimo
    Cavoretto, Paolo Ivo
    [J]. BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [4] SARS-CoV-2 infection by trimester of pregnancy and adverse perinatal outcomes: a Mexican retrospective cohort study
    Ghosh, Rakesh
    Gutierrez, Juan Pablo
    Ascencio-Montiel, Ivan de Jesus
    Juarez-Flores, Arturo
    Bertozzi, Stefano M.
    [J]. BMJ OPEN, 2024, 14 (04):
  • [5] A COMPARISON OF CARDIOVASCULAR OUTCOMES AMONG SARS-COV-2 POSITIVE PATIENTS, SARS-COV-2 NEGATIVE PATIENTS, AND A HISTORICAL COHORT
    May, Heidi Thomas
    Knight, Stacey
    Horne, Benjamin Davies
    Bair, Tami L.
    Anderson, Jeffrey L.
    Le, Viet T.
    Muhlestein, J. Brent
    Knowlton, Kirk U.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 1842 - 1842
  • [6] Outcomes in Pregnant Adolescent Patients Infected With SARS-CoV-2
    Nguyen, Anh Quynh
    Murrin, Ellen
    Nasrallah, Sebastian
    Hitchings, Laura
    Wang, Jenny Q.
    VanDillen, Michael B.
    Eletu, Oluwafunmilayo
    Maxwell, G. Larry
    Gomez, Luis M.
    [J]. PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2023, 42 (09) : 781 - 786
  • [7] Outcomes in Adolescent Pregnant Patients Infected With SARS-CoV-2
    Murrin, Ellen M.
    Nguyen, Anh Q.
    Hitchings, Laura
    Nasrallah, Sebastian
    Wang, Jenny
    Gomez, Luis M.
    [J]. OBSTETRICS AND GYNECOLOGY, 2022, 139 : 72S - 72S
  • [8] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Alessio Bottrighi
    Marzio Pennisi
    Annalisa Roveta
    Costanza Massarino
    Antonella Cassinari
    Marta Betti
    Tatiana Bolgeo
    Marinella Bertolotti
    Emanuele Rava
    Antonio Maconi
    [J]. BMC Medical Informatics and Decision Making, 22
  • [9] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Bottrighi, Alessio
    Pennisi, Marzio
    Roveta, Annalisa
    Massarino, Costanza
    Cassinari, Antonella
    Betti, Marta
    Bolgeo, Tatiana
    Bertolotti, Marinella
    Rava, Emanuele
    Maconi, Antonio
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [10] Personalized survival probabilities for SARS-CoV-2 positive patients by explainable machine learning
    Adrian G. Zucco
    Rudi Agius
    Rebecka Svanberg
    Kasper S. Moestrup
    Ramtin Z. Marandi
    Cameron Ross MacPherson
    Jens Lundgren
    Sisse R. Ostrowski
    Carsten U. Niemann
    [J]. Scientific Reports, 12