"Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure

被引:86
|
作者
Wang, Rui [1 ]
Wang, Lu [1 ]
Liu, Rui [1 ]
Li, Xiangye [1 ]
Wu, Youzhi [1 ]
Ran, Fen [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mat Sci & Engn, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion Batteries; Anode Materials; CrystalStructures; Diffusion Path; Long-life; High-safe; Energy density; Fast Charging; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL ENERGY-STORAGE; ROCK-SALT ANODE; RECHARGEABLE LITHIUM; CARBON NETWORK; TINB2O7; ANODE; LONG-LIFE; TI2NB10O29; NANOSPHERES; ELECTRODE PERFORMANCE; SUPERIOR PERFORMANCE;
D O I
10.1021/acsnano.3c08712
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance. Accordingly, employing anode materials with low diffusion barrier could improve the "fast-charging" performance of the lithium-ion battery. In this Review, first, the "fast-charging" principle of lithium-ion battery and ion diffusion path in the crystal are briefly outlined. Next, the application prospects of "fast-charging" anode materials with various crystal structures are evaluated to search "fast-charging" anode materials with stable, safe, and long lifespan, solving the remaining challenges associated with high power and high safety. Finally, summarizing recent research advances for typical "fast-charging" anode materials, including preparation methods for advanced morphologies and the latest techniques for ameliorating performance. Furthermore, an outlook is given on the ongoing breakthroughs for "fast-charging" anode materials of lithium-ion batteries. Intercalated materials (niobium-based, carbon-based, titanium-based, vanadium-based) with favorable cycling stability are predominantly limited by undesired electronic conductivity and theoretical specific capacity. Accordingly, addressing the electrical conductivity of these materials constitutes an effective trend for realizing fast-charging. The conversion-type transition metal oxide and phosphorus-based materials with high theoretical specific capacity typically undergoes significant volume variation during charging and discharging. Consequently, alleviating the volume expansion could significantly fulfill the application of these materials in fast-charging batteries.
引用
收藏
页码:2611 / 2648
页数:38
相关论文
共 50 条
  • [1] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [2] A Review on Electrode Materials of Fast-Charging Lithium-Ion batteries
    Zhang, Zhen
    Zhao, Decheng
    Xu, Yuanyuan
    Liu, Shupei
    Xu, Xiangyu
    Zhou, Jian
    Gao, Fei
    Tang, Hao
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    CHEMICAL RECORD, 2022, 22 (10):
  • [3] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ateş
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15
  • [4] A disordered rock salt anode for fast-charging lithium-ion batteries
    Liu, Haodong
    Zhu, Zhuoying
    Yan, Qizhang
    Yu, Sicen
    He, Xin
    Chen, Yan
    Zhang, Rui
    Ma, Lu
    Liu, Tongchao
    Li, Matthew
    Lin, Ruoqian
    Chen, Yiming
    Li, Yejing
    Xing, Xing
    Choi, Yoonjung
    Gao, Lucy
    Cho, Helen Sung-yun
    An, Ke
    Feng, Jun
    Kostecki, Robert
    Amine, Khalil
    Wu, Tianpin
    Lu, Jun
    Xin, Huolin L.
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2020, 585 (7823) : 63 - +
  • [5] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Weng, Suting
    Yang, Gaojing
    Zhang, Simeng
    Liu, Xiaozhi
    Zhang, Xiao
    Liu, Zepeng
    Cao, Mengyan
    Ates, Mehmet Nurullah
    Li, Yejing
    Chen, Liquan
    Wang, Zhaoxiang
    Wang, Xuefeng
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [6] A disordered rock salt anode for fast-charging lithium-ion batteries
    Haodong Liu
    Zhuoying Zhu
    Qizhang Yan
    Sicen Yu
    Xin He
    Yan Chen
    Rui Zhang
    Lu Ma
    Tongchao Liu
    Matthew Li
    Ruoqian Lin
    Yiming Chen
    Yejing Li
    Xing Xing
    Yoonjung Choi
    Lucy Gao
    Helen Sung-yun Cho
    Ke An
    Jun Feng
    Robert Kostecki
    Khalil Amine
    Tianpin Wu
    Jun Lu
    Huolin L. Xin
    Shyue Ping Ong
    Ping Liu
    Nature, 2020, 585 : 63 - 67
  • [7] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ate?
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15 (11) : 526 - 537
  • [8] Vanadium sulfide decorated at carbon matrix as anode materials for "fast-charging" lithium-ion batteries
    Wang, Lu
    Dang, Hao
    He, Tianqi
    Liu, Rui
    Wang, Rui
    Ran, Fen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [9] Hierarchical macro/mesoporous NiO as stable and fast-charging anode materials for lithium-ion batteries
    Zhu, Xiaobo
    Luo, Bin
    Butburee, Teera
    Zhu, Jingwen
    Han, She
    Wang, Lianzhou
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 238 : 78 - 83
  • [10] Analysis of Graphite Materials for Fast-Charging Capabilities in Lithium-Ion Batteries
    Kirner, J.
    Zhang, L.
    Qin, Y.
    Su, X.
    Li, Y.
    Lu, W.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 33 - 44