Allulose enhances epithelial barrier function by tight junction regulation via the TLR4/MyD88/NF-κB immune signaling pathway in an intestinal Caco-2 cell model

被引:3
|
作者
Baek, Jihye [1 ]
Kim, Jong-Hwa [1 ]
Nam, Yohan [1 ]
Kim, Go-Eun [2 ]
Ryu, Kyungheon [2 ]
Sa, Soonok [2 ]
Han, Jung-Sook [2 ]
Kim, Wonyong [1 ]
机构
[1] Chung Ang Univ, Coll Med, Dept Microbiol, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Samyang Corp, Food R&D Ctr, Seongnam 13488, South Korea
基金
新加坡国家研究基金会;
关键词
D; -allulose; TLR4/MyD88/NF; kappa B signaling; Tight junction; Immune regulation; RARE SUGAR; RECEPTOR; 4; D-PSICOSE; DYSFUNCTION; PROMOTES;
D O I
10.1016/j.jff.2023.105721
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
D-allulose, a fructose isomer with almost zero calories, has been widely used as a food ingredient that is generally recognized as safe. In recent studies, D-allulose has been shown to alleviate some diseases via restoration of the intestinal barrier. To better understand the role of D-allulose in intestinal epithelial barrier function, we conducted experiments to demonstrate its effects. Our results demonstrated that D-allulose increased transepithelial electrical resistance and decreased intestinal barrier function-associated permeability toward 4 kDa FITC-dextran flux in the damaged intestinal epithelial barrier. It also repaired the disruption pattern of tight junction proteins (ZO-1, occludin, and claudin-1) and inhibited the inflammatory response by inhibiting the TLR4/MyD88/NF-kappa B pathway. Overall, these findings suggest that D-allulose has the potential to be a beneficial food supplement for improving intestinal epithelial barrier dysfunction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Huangshui Polysaccharide Exerts Intestinal Barrier Protective Effects through the TLR4/MyD88/NF-κB and MAPK Signaling Pathways in Caco-2 Cells
    Huo, Jiaying
    Pei, Wenhao
    Liu, Guoying
    Sun, Weizheng
    Wu, Jihong
    Huang, Mingquan
    Lu, Wei
    Sun, Jinyuan
    Sun, Baoguo
    FOODS, 2023, 12 (03)
  • [2] Eugenol Possesses Colitis Protective Effects: Impacts on the TLR4/MyD88/NF-κB Pathway, Intestinal Epithelial Barrier, and Macrophage Polarization
    Huang, Jun-Jie
    Feng, Yue-Min
    Zheng, Shu-Mei
    Yu, Cheng-Long
    Zhou, Rui-Gang
    Liu, Ming-Jiang
    Bo, Ruo-Nan
    Yu, Jie
    Li, Jin-Gui
    AMERICAN JOURNAL OF CHINESE MEDICINE, 2024, 52 (02): : 493 - 512
  • [3] Jatrorrhizine Alleviates DSS-Induced Ulcerative Colitis by Regulating the Intestinal Barrier Function and Inhibiting TLR4/MyD88/NF-κB Signaling Pathway
    Niu, Shengqi
    Jing, Manyi
    Wen, Jianxia
    Wei, Shizhang
    Li, Haotian
    Li, Xing
    Ma, Xiao
    Zhao, Yanling
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [4] Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway
    Shi, Yuru
    Zhang, Xiaoqian
    Pei, Shengji
    Wang, Yuhua
    NATURAL PRODUCTS AND BIOPROSPECTING, 2024, 14 (01)
  • [5] Evaluation of the protective role of resveratrol on LPS-induced septic intestinal barrier function via TLR4/MyD88/NF-κB signaling pathways
    Shi, Zhongliang
    Jiao, Yanna
    Lai, Zhizhen
    Liu, Juan
    Yang, Bo
    Hu, Mahong
    Meng, Jianbiao
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Schizandrin B protects LPS-induced sepsis via TLR4/NF-κB/MyD88 signaling pathway
    Xu, Jianjun
    Lu, Caijiao
    Liu, Zhengjun
    Zhang, Peng
    Guo, Hailei
    Wang, Tingting
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (04): : 1155 - 1163
  • [7] Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE
    Wu, Liucheng
    Du, Lili
    Ju, Qianqian
    Chen, Zhiheng
    Ma, Yu
    Bai, Ting
    Ji, Guiqing
    Wu, Yu
    Liu, Zhaoguo
    Shao, Yixiang
    Peng, Xiaoqing
    INFLAMMATION, 2021, 44 (02) : 633 - 644
  • [8] Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE
    Liucheng Wu
    Lili Du
    Qianqian Ju
    Zhiheng Chen
    Yu Ma
    Ting Bai
    Guiqing Ji
    Yu Wu
    Zhaoguo Liu
    Yixiang Shao
    Xiaoqing Peng
    Inflammation, 2021, 44 : 633 - 644
  • [9] Wedelolactone Mitigates Alcoholic Steatohepatitis via Modulating the TLR4/MyD88/NF-κB Pathway
    Jiang, Tao
    Hu, Bingde
    Li, Yongxia
    Yu, Shuihong
    MEDIATORS OF INFLAMMATION, 2024, 2024
  • [10] Jianpi Yangxue Qufeng compound alleviates atopic dermatitis via TLR4/MyD88/NF-κB signaling pathway
    Yang, Xuesong
    Wang, Zhimin
    Huang, Hong
    Luo, Guangyun
    Cong, Lin
    Yang, Jianting
    Ye, Jianzhou
    HELIYON, 2024, 10 (01)