Coronary Artery Segmentation and Tissue Characterization Using Deep Learning: " Virtual" IB- IVUS

被引:0
|
作者
Masuda, Yuto [1 ]
Takeshita, Ryo [2 ]
Wakasa, Shiho [1 ]
Tochibora, Ryota [1 ]
Ichiryu, Hajime [1 ]
Takai, Mizuki [1 ]
Ishihara, Takeshi [1 ]
Endo, Susumu [1 ]
Sahashi, Yuki [1 ]
Hayashi, MIsayo [1 ]
Yoshida, Tamami [1 ]
Yamamoto, Saori [1 ]
Ishiguro, Maya [1 ]
Naruse, Genki [1 ]
Miwa, Hirotaka [1 ]
Yoshida, Akihiro [3 ]
Minatoguchi, Shingo [4 ]
Nakabo, Ayumi [1 ]
Watanabe, Takatomo [1 ]
Takasugi, Nobuhiro [1 ]
Yamada, Yoshihisa [1 ]
Kanamori, Hiromitsu [1 ]
Fukuoka, Daisuke [5 ]
Hara, Takeshi [6 ]
Okura, Hiroyuki [7 ]
机构
[1] Gifu Univ, Grad Sch Med, Gifu, Japan
[2] Gifu Univ, Grad Sch Nat Sci & Technol, Gifu, Japan
[3] Stanford Univ Hosp, Stanford, CA USA
[4] Mt Sinai Hosp, New York, NY USA
[5] Gifu Univ, Fac Educ, Gifu, Japan
[6] Gifu Univ, Fac Engn, Gifu, Japan
[7] Gifu Univ, Gifu, Japan
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
TCT-254
引用
收藏
页码:B99 / B100
页数:2
相关论文
共 50 条
  • [1] Deep learning with convolutional neural network for estimation of the characterisation of coronary plaques: Validation using IB-IVUS
    Masuda, T.
    Nakaura, T.
    Funama, Y.
    Oda, S.
    Okimoto, T.
    Sato, T.
    Noda, N.
    Yoshiura, T.
    Baba, Y.
    Arao, S.
    Hiratsuka, J.
    Awai, K.
    RADIOGRAPHY, 2022, 28 (01) : 61 - 67
  • [2] A fully automated deep learning approach for coronary artery segmentation and comprehensive characterization
    Nannini, Guido
    Saitta, Simone
    Baggiano, Andrea
    Maragna, Riccardo
    Mushtaq, Saima
    Pontone, Gianluca
    Redaelli, Alberto
    APL BIOENGINEERING, 2024, 8 (01)
  • [3] In vivo quantitative tissue characterization of angiographically normal coronary artery assessed by integrated backscatter intravascular ultrasound (IB-IVUS)
    Sano, K
    Kawasaki, M
    Ito, Y
    Hayakawa, K
    Tsuchiya, K
    Nishigaki, K
    Fujiwara, H
    CIRCULATION, 2002, 106 (19) : 585 - 585
  • [4] The tissue characteristics of coronary plaque with microchannel structure in patients with Coronary Artery Disease assessed by OCT and IB-IVUS
    Niki, T.
    Wakatsuki, T.
    Yamaguchi, K.
    Taketani, Y.
    Bando, S.
    Ise, T.
    Iwase, T.
    Yamada, H.
    Soeki, T.
    Sata, M.
    EUROPEAN HEART JOURNAL, 2012, 33 : 398 - 398
  • [5] Deep IVUS: A machine learning framework for fully automatic IVUS segmentation
    Molony, David
    Hosseini, Hossein
    Samady, Habib
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (13) : B1 - B1
  • [6] Plaque Changes and Vessel Remodeling After Balloon Angioplasty for De Novo Coronary Lesions Using PaclitaxelCoated Balloons: A Serial IB- IVUS Study
    Kerr, Shelby
    Minatoguchi, Shingo
    Kobayashi, Chisato
    Kosokabe, Sho
    Endo, Noriko
    Masuda, Yuto
    Naruse, Genki
    Watanabe, Takatomo
    Yamada, Yoshihisa
    Kanamori, Hiromitsu
    Okura, Hiroyuki
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 84 (18) : B141 - B142
  • [7] Segmentation of artery wall in coronary IVUS images: A probabilistic approach
    Gil, D
    Radeva, P
    Saludes, J
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS: APPLICATIONS, ROBOTICS SYSTEMS AND ARCHITECTURES, 2000, : 352 - 355
  • [8] Deep Learning Segmentation of Lumen and Vessel on IVUS Images
    Park, Jung-Eun
    Kweon, Jihoon
    Kang, Do-Yoon
    Lee, Pil Hyung
    Ahn, Jung-Min
    Kang, Soo-Jin
    Park, Duk-Woo
    Lee, Seung-Whan
    Lee, Cheol Whan
    Park, Seong-Wook
    Park, Seung-Jung
    Kim, Young-Hak
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (14) : S27 - S27
  • [9] A coronary artery CTA segmentation approach based on deep learning
    Huang, Caiyun
    Yin, Changhua
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (02) : 245 - 259
  • [10] An automatic deep learning approach for coronary artery calcium segmentation
    Santini, G.
    Della Latta, D.
    Martini, N.
    Valvano, G.
    Gori, A.
    Ripoli, A.
    Susini, C. L.
    Landini, L.
    Chiappino, D.
    EMBEC & NBC 2017, 2018, 65 : 374 - 377