MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding

被引:4
|
作者
Binatli, Oguz C. [1 ]
Gonen, Mehmet [2 ,3 ]
机构
[1] Koc Univ, Grad Sch Sci & Engn, TR-34450 Istanbul, Turkiye
[2] Koc Univ, Coll Engn, Dept Ind Engn, TR-34450 Istanbul, Turkiye
[3] Koc Univ, Sch Med, TR-34450 Istanbul, Turkiye
关键词
Drug-target interaction prediction; Drug repurposing; Manifold optimization; Kernel methods; Machine learning;
D O I
10.1186/s12859-023-05401-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drugtarget interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold optimization based kernel preserving embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous data. Our model projects heterogeneous drug and target data into a unified embedding space by preserving drug-target interactions and drug-drug, target-target similarities simultaneously. Results: We performed ten replications of ten-fold cross validation on four different drug-target interaction network data sets for predicting DTIs for previously unseen drugs. The classification evaluation metrics showed better or comparable performance compared to previous similarity-based state-of-the-art methods. We also evaluated MOKPE on predicting unknown DTIs of a given network. Our implementation of the proposed algorithm in R together with the scripts that replicate the reported experiments is publicly available at https://github.com/ocbinatli/mokpe.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] MOKPE: drug–target interaction prediction via manifold optimization based kernel preserving embedding
    Oğuz C. Binatlı
    Mehmet Gönen
    BMC Bioinformatics, 24
  • [2] A Network-Based Embedding Method for Drug-Target Interaction Prediction
    Parvizi, Poorya
    Azuaje, Francisco
    Theodoratou, Evropi
    Luz, Saturnino
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5304 - 5307
  • [3] HNEDTI: Prediction of drug-target interaction based on heterogeneous network embedding
    Lu, Zhangli
    Wang, Yake
    Zeng, Min
    Li, Min
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 211 - 214
  • [4] Advancing Drug-Target Interaction prediction with BERT and subsequence embedding
    Yang, Zhihui
    Liu, Juan
    Yang, Feng
    Zhang, Xiaolei
    Zhang, Qiang
    Zhu, Xuekai
    Jiang, Peng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 110
  • [5] Drug-Target Interaction Prediction Based on Knowledge Graph Embedding and BiLSTM Networks
    Zhang, Yiwen
    Cheng, Mengqi
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 803 - 813
  • [6] A comparison of embedding aggregation strategies in drug-target interaction prediction
    Iliadis, Dimitrios
    De Baets, Bernard
    Pahikkala, Tapio
    Waegeman, Willem
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [7] Computational Drug-target Interaction Prediction based on Graph Embedding and Graph Mining
    Thafar, Maha A.
    Albaradie, Somayah
    Olayan, Rawan S.
    Ashoor, Haitham
    Essack, Magbubah
    Bajic, Vladimir B.
    PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS (ICBBB 2020), 2020, : 14 - 21
  • [8] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [9] Drug-target interaction prediction using knowledge graph embedding
    Li, Nan
    Yang, Zhihao
    Wang, Jian
    Lin, Hongfei
    ISCIENCE, 2024, 27 (06)
  • [10] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17