Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes

被引:20
|
作者
Wang, Gaowei [1 ,2 ]
Chiou, Joshua [1 ,2 ,3 ]
Zeng, Chun [1 ,2 ]
Miller, Michael [4 ]
Matta, Ileana [1 ,2 ]
Han, Jee Yun [4 ]
Kadakia, Nikita [1 ,2 ]
Okino, Mei-Lin [1 ,2 ]
Beebe, Elisha [1 ,2 ]
Mallick, Medhavi [1 ,2 ]
Camunas-Soler, Joan [5 ]
dos Santos, Theodore [6 ,7 ]
Dai, Xiao-Qing [6 ,7 ]
Ellis, Cara [6 ,7 ]
Hang, Yan [8 ,9 ]
Kim, Seung K. [8 ,9 ,10 ]
MacDonald, Patrick E. [6 ,7 ]
Kandeel, Fouad R. [11 ]
Preissl, Sebastian [4 ,12 ]
Gaulton, Kyle J. [1 ,2 ,13 ]
Sander, Maike [1 ,2 ,13 ,14 ,15 ]
机构
[1] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Pediat Diabet Res Ctr, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Biomed Grad Studies Program, La Jolla, CA USA
[4] Univ Calif San Diego, Ctr Epigen, La Jolla, CA 92093 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA USA
[6] Univ Alberta, Dept Pharmacol, Edmonton, AB, Canada
[7] Univ Alberta, Alberta Diabet Inst, Edmonton, AB, Canada
[8] Stanford Univ, Dept Dev Biol, Sch Med, Stanford, CA USA
[9] Stanford Univ, Dept Med & Pediat, Sch Med, Stanford, CA USA
[10] Stanford Univ, Stanford Diabet Res Ctr, Sch Med, Stanford, CA USA
[11] City Hope Natl Med Ctr, Dept Clin Diabet Endocrinol & Metab, Duarte, CA USA
[12] Univ Freiburg, Inst Expt & Clin Pharmacol & Toxicol, Fac Med, Freiburg, Germany
[13] Univ Calif San Diego, Inst Genom Med, La Jolla, CA 92093 USA
[14] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
[15] Max Delbruck Ctr Mol Med Helmholtz Assoc, Berlin, Germany
基金
美国国家卫生研究院;
关键词
HUMAN PANCREATIC-ISLETS; TRANSCRIPTION; REVEALS; STRESS; HETEROGENEITY; ACCESSIBILITY; IMPAIRMENT; NETWORK; GENES;
D O I
10.1038/s41588-023-01397-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell multiomic and functional characterization of human pancreatic islets identifies two beta cell subtypes correlated with type 2 diabetes progression that exhibit distinct gene regulatory programs and electrophysiological phenotypes. Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases.
引用
收藏
页码:984 / +
页数:29
相关论文
共 50 条
  • [1] Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes
    Gaowei Wang
    Joshua Chiou
    Chun Zeng
    Michael Miller
    Ileana Matta
    Jee Yun Han
    Nikita Kadakia
    Mei-Lin Okino
    Elisha Beebe
    Medhavi Mallick
    Joan Camunas-Soler
    Theodore dos Santos
    Xiao-Qing Dai
    Cara Ellis
    Yan Hang
    Seung K. Kim
    Patrick E. MacDonald
    Fouad R. Kandeel
    Sebastian Preissl
    Kyle J. Gaulton
    Maike Sander
    Nature Genetics, 2023, 55 : 984 - 994
  • [2] Single-cell gene expression analysis reveals β-cell dysfunction and deficit mechanisms in type 2 diabetes
    Lichun Ma
    Jie Zheng
    BMC Bioinformatics, 19
  • [3] Single-cell gene expression analysis reveals -cell dysfunction and deficit mechanisms in type 2 diabetes
    Ma, Lichun
    Zheng, Jie
    BMC BIOINFORMATICS, 2018, 19
  • [4] Single-Cell Multiomic Analysis of the Human Pancreas in Type 1 Diabetes
    Melton, Rebecca
    Beebe, Elisha
    Zeng, Chun
    Miller, Michael T.
    Wang, Gaowei
    Mcgrail, Carolyn
    Mummey, Hannah
    Kusmartseva, Irina
    Atkinson, Mark A.
    Preissl, Sebastian
    Sander, Maike
    Gaulton, Kyle J.
    DIABETES, 2022, 71
  • [5] Untangling the genetics of beta cell dysfunction and death in type 1 diabetes
    Robertson, Catherine C.
    Elgamal, Ruth M.
    Henry-Kanarek, Belle A.
    Arvan, Peter
    Chen, Shuibing
    Dhawan, Sangeeta
    Eizirik, Decio L.
    Kaddis, John S.
    Vahedi, Golnaz
    Parker, Stephen C. J.
    Gaulton, Kyle J.
    Soleimanpour, Scott A.
    MOLECULAR METABOLISM, 2024, 86
  • [6] SCOTv2: Single-Cell Multiomic Alignment with Disproportionate Cell-Type Representation
    Demetci, Pinar
    Santorella, Rebecca
    Chakravarthy, Manav
    Sandstede, Bjorn
    Singh, Ritambhara
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (11) : 1213 - 1228
  • [7] Interpreting type 1 diabetes risk with genetics and single-cell epigenomics
    Joshua Chiou
    Ryan J. Geusz
    Mei-Lin Okino
    Jee Yun Han
    Michael Miller
    Rebecca Melton
    Elisha Beebe
    Paola Benaglio
    Serina Huang
    Katha Korgaonkar
    Sandra Heller
    Alexander Kleger
    Sebastian Preissl
    David U. Gorkin
    Maike Sander
    Kyle J. Gaulton
    Nature, 2021, 594 : 398 - 402
  • [8] Interpreting type 1 diabetes risk with genetics and single-cell epigenomics
    Chiou, Joshua
    Geusz, Ryan J.
    Okino, Mei-Lin
    Han, Jee Yun
    Miller, Michael
    Melton, Rebecca
    Beebe, Elisha
    Benaglio, Paola
    Huang, Serina
    Korgaonkar, Katha
    Heller, Sandra
    Kleger, Alexander
    Preissl, Sebastian
    Gorkin, David U.
    Sander, Maike
    Gaulton, Kyle J.
    NATURE, 2021, 594 (7863) : 398 - +
  • [9] Single-cell network biology enabling cell-type-resolved disease genetics
    Junha Cha
    Insuk Lee
    Genomics & Informatics, 23 (1)
  • [10] TripletDGC: assessing critical cell types of disease genes by integrating single-cell genomics and human genetics
    Shou, Yaoqi
    Wang, Bingbo
    Yang, Zitian
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (10)