Electrochemical Synthesis of Fractal Nanostructures for Efficient Surface-Enhanced Raman Spectroscopy

被引:1
|
作者
Qi, Jianxia [1 ]
Wang, Rui [2 ]
Wang, Yongkai [2 ]
Dong, Jun [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
[2] Xian Univ Posts & Telecommun, Sch Elect Engn, Xian, Peoples R China
基金
美国国家科学基金会;
关键词
Fractal nanostructure; Surface Raman scattering; Local surface plasmon resonance; Electrochemical method; Graphene; GRAPHENE; FLUORESCENCE; SUBSTRATE; SERS;
D O I
10.1007/s11468-023-01859-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fractal nanostructures have sharp tips and edges, and the gap between each trunk and branch is narrow. The structure is ideal for generating high-density plasmonic "hot spots" to achieve a high-intensity local electromagnetic (EM) field, which is beneficial for improving the substrate Raman activity. In this paper, an electrochemical method is used to prepare a silver fractal nanostructure substrate. A single layer of graphene is transferred to the surface of the silver fractal structure substrate by a wet chemical transfer method to prepare a graphene/metal (G/silver fractal) nanostructure composite substrate. Experimental observations show that G/silver fractal nanostructures exhibit higher Raman activity than that of pure silver fractal nanostructures. Numerical simulation calculation also verifies the accuracy of the experiment. In addition, the diversity of substrate detection is analyzed, and the experimental results show that the substrate can detect Rh6G and CV probe molecules simultaneously, which provides an experimental basis for investigating multichannel Raman spectroscopy sensing substrates. Therefore, the fabricated G/silver fractal nanostructure substrate provides substrate support and an experimental basis for Raman spectroscopy detection in several fields, including actual environment detection and biomedical vibration.
引用
收藏
页码:1287 / 1295
页数:9
相关论文
共 50 条
  • [1] Electrochemical Synthesis of Fractal Nanostructures for Efficient Surface-Enhanced Raman Spectroscopy
    Jianxia Qi
    Rui Wang
    Yongkai Wang
    Jun Dong
    Plasmonics, 2023, 18 : 1287 - 1295
  • [2] Electrochemical surface-enhanced Raman spectroscopy of nanostructures
    Wu, De-Yin
    Li, Jian-Feng
    Ren, Bin
    Tian, Zhong-Qun
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) : 1025 - 1041
  • [3] Electrochemical Synthesis Of Silver And Gold Nanostructures For Surface-Enhanced Raman Spectroscopy
    Brodard, Pierre
    Bechelany, Mikhael
    Elias, Jamil
    Philippe, Laetitia
    Michler, Johann
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 970 - 971
  • [4] Electrochemical surface-enhanced Raman spectroscopy
    Brosseau, Christa L.
    Colina, Alvaro
    Perales-Rondon, Juan V.
    Wilson, Andrew J.
    Joshi, Padmanabh B.
    Ren, Bin
    Wang, Xiang
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [5] Electrochemical surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 3
  • [6] Microgel nanostructures for surface-enhanced Raman spectroscopy
    Emory, Steven
    Silva, Alyson
    Lo, Joelle
    Olson, Sage
    Rider, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] Surface-enhanced Raman spectroscopy of semiconductor nanostructures
    Milekhin, A. G.
    Sveshnikova, L. L.
    Duda, T. A.
    Yeryukov, N. A.
    Rodyakina, E. E.
    Gutakovskii, A. K.
    Batsanov, S. A.
    Latyshev, A. V.
    Zahn, D. R. T.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 75 : 210 - 222
  • [8] Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy
    Li, Da
    Liu, Jingquan
    Wang, Hongbin
    Barrow, Colin J.
    Yang, Wenrong
    CHEMICAL COMMUNICATIONS, 2016, 52 (73) : 10968 - 10971
  • [9] Surface-enhanced Raman spectroscopy using metallic nanostructures
    Vo-Dinh, Tuan
    TrAC, Trends in Analytical Chemistry (Personal Edition), 1998, 17 (8-9): : 557 - 582
  • [10] Surface-enhanced Raman spectroscopy using metallic nanostructures
    Vo-Dinh, T
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1998, 17 (8-9) : 557 - 582