Study on slope stability analysis and large deformation characteristics of failure based on SPH method

被引:4
|
作者
Song, Xiong [1 ]
Zhang, Xiaoqiang [1 ,2 ]
Wu, Shunchuan [1 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650000, Yunnan, Peoples R China
[2] Power China Kunming Engn Corp Ltd, Kunming 650051, Peoples R China
[3] Minist Nat Resources Peoples Republ China, Key Lab Geohazard Forecast & Geol Restorat Plateau, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Smoothed particle hydrodynamics; Stability analysis factor of safety; Motion characteristics; SMOOTHED PARTICLE HYDRODYNAMICS; FINITE-ELEMENT-METHOD; MATERIAL-POINT METHOD; SIMULATION; FLOWS; GRADIENT;
D O I
10.1007/s40571-023-00597-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Slope instability failure is a large deformation problem. Traditional numerical methods and limit equilibrium methods are difficult to characterize the whole process of failure, resulting in unclear analysis of instability mechanism. A meshless method, smoothed particle hydrodynamics (SPH) method, is used to establish a numerical model of soil deformation and failure by adopting Drucker-Prager yield criteria to characterize the mechanical properties of soil. The validity of the model is verified by shear test, biaxial compression test and soil self-weight test. The damping coefficient and improved stress normalization algorithm are introduced to optimize the slope stress distribution and overcome the short-scale noise problem. Finally, the numerical simulation of the whole process of slope progressive instability failure is realized. On this basis, the tolerance is adopted. Based on the displacement mutation criterion, an improved SPH safety factor algorithm is adopted to calculate the slope safety factor and compared with the results of finite element software. The results show that SPH can effectively characterize the whole process of progressive failure of soil slope instability and overcome the shortcomings of non-convergence in the study of soil material deformation and failure by traditional numerical methods. At the same time, the improved SPH safety factor discrimination method overcomes the shortcomings of the fixed reduction coefficient algorithm and improves the calculation efficiency of the safety factor based on the meshless theory. The research results can provide a new method and idea for studying the disaster range and stability analysis of slope failure.
引用
收藏
页码:1913 / 1929
页数:17
相关论文
共 50 条
  • [1] Study on slope stability analysis and large deformation characteristics of failure based on SPH method
    Xiong Song
    Xiaoqiang Zhang
    Shunchuan Wu
    Computational Particle Mechanics, 2023, 10 : 1913 - 1929
  • [2] Failure criteria based on SPH slope stability analysis
    Tang Y.-F.
    Shi F.-Q.
    Liao X.-Y.
    2016, Chinese Society of Civil Engineering (38): : 904 - 908
  • [3] Determination on flow rules of large deformation analysis of slope using SPH method
    Tang Yu-feng
    Shi Fu-qiang
    Liao Xue-yan
    Zhou Shuai
    ROCK AND SOIL MECHANICS, 2018, 39 (04) : 1509 - 1516
  • [4] Large deformation failure analysis of the soil slope based on the material point method
    Huang, Peng
    Li, Shun-li
    Guo, Hu
    Hao, Zhi-ming
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (04) : 951 - 963
  • [5] Large deformation failure analysis of the soil slope based on the material point method
    Peng Huang
    Shun-li Li
    Hu Guo
    Zhi-ming Hao
    Computational Geosciences, 2015, 19 : 951 - 963
  • [6] Deformation and Stability Analysis of Large Slope Based on ADINA Software
    Yuan, Baoyuan
    Pan, Weifan
    Wang, Qi
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 1047 - 1050
  • [7] Mechanism and Stability Analysis of Deformation Failure of a Slope
    Lu, Yingfa
    Liu, Gan
    Cui, Kai
    Zheng, Jie
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [8] Slope stability analysis using smoothed particle hydrodynamics (SPH) method
    Nonoyama, Hideto
    Moriguchi, Shuji
    Sawada, Kazuhide
    Yashima, Atsushi
    SOILS AND FOUNDATIONS, 2015, 55 (02) : 458 - 470
  • [9] Deformation and failure response characteristics and stability analysis of bedding rock slope after underground adverse slope mining
    Dai, Zhangyin
    Zhang, Lu
    Wang, Yanlei
    Jiang, Zebiao
    Xu, Shiqing
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2021, 80 (06) : 4405 - 4422
  • [10] Numerical simulation on the stability of rock slope based on an improved SPH Method
    YU Shu-yang
    REN Xu-hua
    ZHANG Ji-xun
    WANG Hai-jun
    SUN Zhao-hua
    ZHOU Yu
    Journal of Mountain Science, 2021, 18 (07) : 1937 - 1950