Unsupervised convolutional autoencoders for 4D transperineal ultrasound classification

被引:3
|
作者
van den Noort, Frieda [1 ]
Manzini, Claudia [2 ]
Hofsteenge, Merijn [1 ]
Sirmacek, Beril [3 ]
van der Vaart, Carl H. H. [2 ]
Slump, Cornelis H. H. [1 ]
机构
[1] Univ Twente, Tech Med Ctr Robot & Mechatron, Fac Elect Engn Math & Comp Sci, Enschede, Netherlands
[2] Univ Med Ctr Utrecht, Dept Obstet & Gynecol, Utrecht, Netherlands
[3] Saxion Univ Appl Sci, Sch Creat Technol, Smart Cities Grp, Enschede, Netherlands
关键词
urogynecology; transperineal ultrasound; convolutional autoencoder; classification; unsupervised learning; MUSCLE; STRAIN;
D O I
10.1117/1.JMI.10.1.014004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: 4D Transperineal ultrasound (TPUS) is used to examine female pelvic floor disorders. Muscle movement, like performing a muscle contraction or a Valsalva maneuver, can be captured on TPUS. Our work investigates the possibility for unsupervised analysis and classification of the TPUS data.Approach: An unsupervised 3D-convolutional autoencoder is trained to compress TPUS volume frames into a latent feature vector (LFV) of 128 elements. The (co)variance of the features are analyzed and statistical tests are performed to analyze how features contribute in storing contraction and Valsalva information. Further dimensionality reduction is applied (principal component analysis or a 2D-convolutional autoencoder) to the LFVs of the frames of the TPUS movie to compress the data and analyze the interframe movement. Clustering algorithms (K-means clustering and Gaussian mixture models) are applied to this representation of the data to investigate the possibilities of unsupervised classification.Results: The majority of the features show a significant difference between contraction and Valsalva. The (co)variance of the features from the LFVs was investigated and features most prominent in capturing muscle movement were identified. Furthermore, the first principal component of the frames from a single TPUS movie can be used to identify movement between the frames. The best classification results were obtained after applying principal component analysis and Gaussian mixture models to the LFVs of the TPUS movies, yielding a 91.2% accuracy.Conclusion: Unsupervised analysis and classification of TPUS data yields relevant information about the type and amount of muscle movement present.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] 4D Transperineal Ultrasound for the Diagnosis and Classification of Stress Urinary Incontinence in Postmenopausal Women
    Guo, Xiaofei
    Ding, Changwei
    Zhang, Shuying
    JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2023, 33 (04): : 438 - 442
  • [2] 4D TRANSPERINEAL ULTRASOUND OF THE FEMALE PELVIC FLOOR
    Handa, V. L.
    Diffenderfer, K.
    Zaharieva, M.
    Dietz, H. P.
    INTERNATIONAL UROGYNECOLOGY JOURNAL, 2019, 30 : S197 - S197
  • [3] Online learning for 3D/4D transperineal ultrasound of the pelvic floor
    Garcia-Mejido, J. A.
    Fernandez-Palacin, A.
    Bonomi-Barby, M. J.
    De la Fuente Vaquero, P.
    Iglesias, E.
    Sainz, J. A.
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2020, 33 (16): : 2805 - 2811
  • [4] Feasibility of prostatic calcifications tracking using 4D transperineal ultrasound (TPUS).
    Leung, W. K.
    Pang, E. P. P.
    Cheung, S. K. T.
    Mui, W. H.
    Wo, B. B. W.
    Liu, H.
    Siang, J. C. W.
    Tuan, J. K. L.
    Tan, T. W. K.
    Nei, W. L.
    Wang, M. L. C.
    Atan, M. A. B.
    Chai, J. Y. H.
    Loh, J. M.
    Kor, A. W. T.
    Lip, L. H.
    Low, G. K.
    Liu, C. H. A.
    Lee, K. C.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S783 - S784
  • [5] 4D transperineal ultrasound: feedback for good obstetric anal sphincter injuries reparation
    Montaguti, Elisa
    Raspollini, Arianna
    Montedoro, Chiara
    Nedu, Bianca
    Pilu, Gianluigi
    JOURNAL OF ULTRASOUND, 2024, 27 (04) : 987 - 991
  • [6] Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia
    Akila, Serag Mohamed
    Imanov, Elbrus
    Almezhghwi, Khaled
    DIAGNOSTICS, 2023, 13 (13)
  • [7] UNSUPERVISED DEEP HASHING WITH STACKED CONVOLUTIONAL AUTOENCODERS
    En, Sovann
    Cremilleux, Bruno
    Jurie, Frederic
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3420 - 3424
  • [8] 4D Unsupervised Object Discovery
    Wang, Yuqi
    Chen, Yuntao
    Zhang, Zhaoxiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Unsupervised Segmentation of Hyperspectral Images Using 3-D Convolutional Autoencoders
    Nalepa, Jakub
    Myller, Michal
    Imai, Yasuteru
    Honda, Ken-Ichi
    Takeda, Tomomi
    Antoniak, Marek
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1948 - 1952
  • [10] Applicability of 3/4D transperineal ultrasound for the diagnosis of anal sphincter injury during the immediate pospartum
    Antonio Garcia-Mejido, Jose
    Gutierrez Palomino, Laura
    Fernandez Palacin, Ana
    Antonio Sainz-Bueno, Jose
    CIRUGIA Y CIRUJANOS, 2017, 85 (01): : 80 - 86