Self-healing nanocomposite hydrogels based on chitosan/ modified polyethylene glycol/graphene

被引:7
|
作者
Hosseini, Shahryar [1 ]
Eslahi, Niloofar [2 ]
Jahanmardi, Reza [1 ]
机构
[1] Islamic Azad Univ, Dept Polymer Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Islamic Azad Univ, Dept Text Engn, Sci & Res Branch, Tehran 1477893855, Iran
来源
关键词
Hydrogel; Chitosan; Polyethylene glycol; Drug delivery; Graphene oxide; IN-VITRO; OXIDE; EXTRACT; TOUGH; BONE;
D O I
10.1016/j.mtcomm.2023.107417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this research is to prepare self-healing injectable nanocomposite hydrogels based on benzaldehydemodified polyethylene glycol and chitosan, reinforced with graphene oxide (GO) for the delivery of pomegranate extract (PG) for hard tissue engineering. For this purpose, polyethylene glycol (PEG) was first modified by an aldehyde agent and mixed with chitosan to form hydrogels based on reversible Schiff-Base linkages. Nanocomposites were prepared with the addition of 0.5, 1.0, 1.5, and 2.0 wt% GO to the hydrogels. Then, PG was loaded into the final nanocomposite hydrogels as the drug model to promote cell proliferation and chondrogenesis. The scanning electron microscopy (SEM) images indicated that the incorporation of GO into the hydrogels increased the average pore size from 261 to 403 mu m, resulting in a favorable porous structure. The results also showed an enhancement in the elastic properties as well as the compressive strength of the nanocomposite hydrogels with increasing GO content. The drug release profile followed a power-law kinetics, in which, the content of PG and GO affected the release rate. According to self-healing and injection tests, all the hydrogels had good injection and self-healing capabilities. The incorporation of GO into the hydrogel increased antibacterial properties to more than 99%. The in vitro assay indicated that PG loading provided a suitable environment for the growth and survival of cells on the hydrogels. Therefore, the designed system is a promising framework for the local delivery of pharmaceuticals for hard tissue engineering.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hydrophobically modified nanocomposite hydrogels with self-healing ability
    Akca, Ozge
    Yetiskin, Berkant
    Okay, Oguz
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (28)
  • [2] Self-healing in Nanocomposite Hydrogels
    Haraguchi, Kazutoshi
    Uyama, Kazuhisa
    Tanimoto, Hisashi
    MACROMOLECULAR RAPID COMMUNICATIONS, 2011, 32 (16) : 1253 - 1258
  • [3] Surface modification of graphene oxide for preparing self-healing nanocomposite hydrogels
    Ceper, Ezgi B.
    Su, Esra
    Okay, Oguz
    Guney, Orhan
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (07) : 2276 - 2288
  • [4] Preparation and properties of glycol chitosan based self-healing hydrogel
    Xu, Wenjing
    Liang, Jianrong
    Qu, Mengfei
    Wang, Yixuan
    Hou, Bingna
    Zhao, Linlin
    Zhang, Hang
    Li, Zhengzheng
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2023, 51 (11): : 144 - 150
  • [5] Conductive nanocomposite hydrogels with self-healing property
    Peng, Rengui
    Yu, Yang
    Chen, Sheng
    Yang, Yingkui
    Tang, Youhong
    RSC ADVANCES, 2014, 4 (66): : 35149 - 35155
  • [6] Supramolecular Assembly of Self-Healing Nanocomposite Hydrogels
    Gerth, Marieke
    Bohdan, Malgorzata
    Fokkink, Remco
    Voets, Ilja K.
    van der Gucht, Jasper
    Sprakel, Joris
    MACROMOLECULAR RAPID COMMUNICATIONS, 2014, 35 (24) : 2065 - 2070
  • [7] Nanofibrous chiral supramolecular assembly-derived self-healing hydrogels with polyethylene glycol
    Takafuji, Makoto
    Kawamoto, Kenji
    Hano, Nanami
    Otsuki, Mako
    Ihara, Hirotaka
    NANOSCALE ADVANCES, 2024, 6 (15): : 3850 - 3856
  • [8] Silica-based Janus nanosheets for self-healing nanocomposite hydrogels
    Li, Mengnan
    Li, Xiuli
    Li, Chunyu
    Liu, Hongchen
    Wang, Wenxiang
    Bai, Liangjiu
    Chen, Hou
    Yang, Lixia
    EUROPEAN POLYMER JOURNAL, 2021, 155
  • [9] Organic solvents enhance polyvinyl alcohol/polyethylene glycol self-healing hydrogels for artificial cartilage
    Ye, Zishuo
    Lu, Hailin
    Jia, Endong
    Chen, Jian
    Fu, Lifeng
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2022, 33 (10) : 3455 - 3469
  • [10] Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing
    Deng, Pengpeng
    Yao, Lichao
    Chen, Juanjuan
    Tang, Zhigang
    Zhou, Jinping
    CARBOHYDRATE POLYMERS, 2022, 276