Fast transition-edge sensors suitable for photonic quantum computing

被引:6
|
作者
Hummatov, Ruslan [1 ,2 ]
Lita, Adriana E. [2 ]
Farrahi, Tannaz [1 ,2 ]
Otrooshi, Negar [1 ,2 ]
Fayer, Samuel [3 ]
Collins, Matthew J. [3 ]
Durkin, Malcolm [1 ,2 ]
Bennett, Douglas [2 ]
Ullom, Joel [2 ]
Mirin, Richard P. [2 ]
Nam, Sae Woo [2 ]
机构
[1] Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA
[2] Natl Inst Stand & Technol Boulder, 325 Broadway, Boulder, CO 80305 USA
[3] Xanadu Quantum Technol, 777 Bay St, Toronto, ON M5G 2C8, Canada
关键词
D O I
10.1063/5.0149478
中图分类号
O59 [应用物理学];
学科分类号
摘要
Photon-number resolving transition-edge sensors (TESs) with near unity system detection efficiency enable novel approaches to quantum computing, for example, heralding robust Gottesman-Kitaev-Preskill qubit states. Increasing the speed of the detectors increases the rate at which these states can be heralded. In addition, depending on the details of the scheme, faster detectors can reduce the complexities of the hardware implementation. In previous work, we demonstrated that adding a small amount of gold between the tungsten film and silicon substrate can increase thermal conductance and reduce detector recovery time. In that study, the readout electronics imposed limitations on stable biasing conditions of the TES detector, and the TES could only be biased at higher than ideal values. In this report, we demonstrate the operation of the TES illuminated by a heavily attenuated pulsed laser running at 1 MHz repetition rate and examine the limits to adding gold to speed up device recovery times using a higher bandwidth readout system. The best performance was achieved by combining a 15 x 15 mu m (2) tungsten TES with 5 mu m(3) of gold, which resulted in a recovery time faster than 250 ns, with an energy resolution of 0.25 eV full-width at half maximum at 0.8 eV photon energy.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Transition-edge sensors
    Irwin, KD
    Hilton, GC
    CRYOGENIC PARTICLE DETECTION, 2005, 99 : 63 - 149
  • [2] Conclusive quantum steering with superconducting transition-edge sensors
    Devin H. Smith
    Geoff Gillett
    Marcelo P. de Almeida
    Cyril Branciard
    Alessandro Fedrizzi
    Till J. Weinhold
    Adriana Lita
    Brice Calkins
    Thomas Gerrits
    Howard M. Wiseman
    Sae Woo Nam
    Andrew G. White
    Nature Communications, 3
  • [3] Conclusive quantum steering with superconducting transition-edge sensors
    Smith, Devin H.
    Gillett, Geoff
    de Almeida, Marcelo P.
    Branciard, Cyril
    Fedrizzi, Alessandro
    Weinhold, Till J.
    Lita, Adriana
    Calkins, Brice
    Gerrits, Thomas
    Wiseman, Howard M.
    Nam, Sae Woo
    White, Andrew G.
    NATURE COMMUNICATIONS, 2012, 3
  • [4] Transition-Edge Sensors for HOLMES
    Puiu, A.
    Becker, D.
    Bennett, D.
    Biasotti, M.
    Borghesi, M.
    De Gerone, M.
    Faverzani, M.
    Ferri, E.
    Fowler, J.
    Gallucci, G.
    Gard, J.
    Gatti, F.
    Hilton, G.
    Giachero, A.
    Mates, J.
    Nucciotti, A.
    Pessina, G.
    Schmidt, D.
    Swetz, D.
    Ullom, J.
    Vale, L.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 716 - 722
  • [5] SQUIDs and Transition-Edge Sensors
    Irwin, Kent D.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2021, 34 (06) : 1601 - 1606
  • [6] SQUIDs and Transition-Edge Sensors
    Kent D. Irwin
    Journal of Superconductivity and Novel Magnetism, 2021, 34 : 1601 - 1606
  • [7] Transition-Edge Sensors for HOLMES
    A. Puiu
    D. Becker
    D. Bennett
    M. Biasotti
    M. Borghesi
    M. De Gerone
    M. Faverzani
    E. Ferri
    J. Fowler
    G. Gallucci
    J. Gard
    F. Gatti
    G. Hilton
    A. Giachero
    J. Mates
    A. Nucciotti
    G. Pessina
    D. Schmidt
    D. Swetz
    J. Ullom
    L. Vale
    Journal of Low Temperature Physics, 2020, 199 : 716 - 722
  • [8] Characterization of Optical Fast Transition-Edge Sensors With Optimized Fiber Coupling
    Lolli, L.
    Taralli, E.
    Rajteri, M.
    Numata, T.
    Fukuda, D.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [9] Quantum transition-edge detectors
    Tsang, Mankei
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [10] SQUID multiplexers for transition-edge sensors
    Irwin, KD
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 368 (1-4): : 203 - 210