Tuning the LUMO levels of non-fullerene acceptors via extension of π-conjugated cores for organic solar cells

被引:6
|
作者
Song, Kyu Chan [1 ]
Kim, Byeong Jin [1 ]
Sung, Woong [1 ]
Han, Se Gyo [1 ]
Chung, Sein [1 ]
Lee, Jaewon [2 ]
Cho, Kilwon [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 37673, South Korea
[2] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
SMALL-MOLECULE ACCEPTOR; ELECTRON-ACCEPTOR; POLYMERS; PERFORMANCE; EFFICIENCY;
D O I
10.1039/d2tc05164h
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate how extending the length of a pi-conjugated central A ' core in Acceptor-Donor-Acceptor '-Donor-Acceptor (A-D-A '-D-A)-type non-fused-ring electron acceptors (NFREAs) affects their energy level and the miscibility of donor polymer:NFREA organic solar cells (OSCs). The extended pi-conjugated central A ' core increases their lowest unoccupied molecular orbital (LUMO) energy level. We designed and synthesized three NFREAs: BT-4F, which has a benzothiadiazole (BT) core; DTBT-4F, which has two fused thiophene rings on the BT core; and BTST-4F, which has two fused thienothiophene rings on the BT core. In these NFREAs, the LUMO level is upshifted in the order of increasing length of the extended pi-conjugated core. The open-circuit voltage (V-OC) is related to the gap between the LUMO of the NFREAs and the highest occupied molecular orbital (HOMO) of the donor polymer, thus, the V-OC increased from 0.66 V in a BT-4F-based OSC to 0.81 and 0.84 V in OSCs based on DTBT-4F and BTST-4F, respectively. The PBDB-T donor polymer is more miscible with BTST-4F than with BT-4F and DTBT-4F. The BTST-4F-based blends have a narrower light-absorption range than the PBDB-T:BT-4F blends; however, because of the miscible morphologies of the PBDB-T:BTST-4F blends, the BTST-4F-based devices exhibit a comparable short-circuit current density (J(SC)) to that of BT-4F-based devices. These results indicate that the introduction of extended pi-conjugation of the central core in A-D-A '-D-A-type NFREAs could be an effective method to increase the V-OC of NFREA-based devices while maintaining a decent J(SC). These results further indicate that introducing an extended pi-conjugated central core is a promising design strategy to achieve highly efficient OSCs based on NFREAs.
引用
收藏
页码:5354 / 5362
页数:9
相关论文
共 50 条
  • [1] Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells
    Cnops, Kjell
    Zango, German
    Genoe, Jan
    Heremans, Paul
    Martinez-Diaz, M. Victoria
    Torres, Tomas
    Cheyns, David
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) : 8991 - 8997
  • [2] Non-Fullerene Acceptors for Organic Solar Cells
    Trukhanov, V. A.
    Paraschuk, D. Yu.
    POLYMER SCIENCE SERIES C, 2014, 56 (01) : 72 - 83
  • [3] Non-fullerene acceptors for organic solar cells
    V. A. Trukhanov
    D. Yu. Paraschuk
    Polymer Science Series C, 2014, 56 : 72 - 83
  • [4] Non-fullerene acceptors for organic solar cells
    Cenqi Yan
    Stephen Barlow
    Zhaohui Wang
    He Yan
    Alex K.-Y. Jen
    Seth R. Marder
    Xiaowei Zhan
    Nature Reviews Materials, 3
  • [5] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [6] Development of fullerene acceptors and the application of non-fullerene acceptors in organic solar cells
    Du, Wen-Shuo
    Wang, Gong
    Li, Yun-Fei
    Yu, Yu
    FRONTIERS IN PHYSICS, 2024, 12
  • [7] Aggregation of non-fullerene acceptors in organic solar cells
    Li, Donghui
    Zhang, Xue
    Liu, Dan
    Wang, Tao
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15607 - 15619
  • [8] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128
  • [9] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [10] Organic solar cells based on non-fullerene acceptors
    Jianhui Hou
    Olle Inganäs
    Richard H. Friend
    Feng Gao
    Nature Materials, 2018, 17 (2) : 119 - 128