Enhancing recurrence risk prediction for bladder cancer using multi-sequence MRI radiomics

被引:2
|
作者
Yang, Guoqiang [1 ]
Bai, Jingjing [1 ,2 ]
Hao, Min [1 ,2 ]
Zhang, Lu [1 ,2 ]
Fan, Zhichang [1 ,2 ]
Wang, Xiaochun [1 ]
机构
[1] Shanxi Med Univ, Hosp 1, Dept Radiol, Taiyuan, Shanxi, Peoples R China
[2] Shanxi Med Univ, Coll Med Imaging, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Bladder cancer; MRI; Radiomics; Preoperative nomogram; Recurrence; RADICAL CYSTECTOMY; PROGRESSION; CARCINOMA; UPDATE;
D O I
10.1186/s13244-024-01662-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective We aimed to develop a radiomics-clinical nomogram using multi-sequence MRI to predict recurrence-free survival (RFS) in bladder cancer (BCa) patients and assess its superiority over clinical models. Methods A retrospective cohort of 229 BCa patients with preoperative multi-sequence MRI was divided into a training set (n = 160) and a validation set (n = 69). Radiomics features were extracted from T2-weighted images, diffusion-weighted imaging, apparent diffusion coefficient, and dynamic contrast-enhanced images. Effective features were identified using the least absolute shrinkage and selection operator (LASSO) method. Clinical risk factors were determined via univariate and multivariate Cox analysis, leading to the creation of a radiomics-clinical nomogram. Kaplan-Meier analysis and log-rank tests assessed the relationship between radiomics features and RFS. We calculated the net reclassification improvement (NRI) to evaluate the added value of the radiomics signature and used decision curve analysis (DCA) to assess the nomogram's clinical validity. Results Radiomics features significantly correlated with RFS (log-rank p < 0.001) and were independent of clinical factors (p < 0.001). The combined model, incorporating radiomics features and clinical data, demonstrated the best prognostic value, with C-index values of 0.853 in the training set and 0.832 in the validation set. Compared to the clinical model, the radiomics-clinical nomogram exhibited superior calibration and classification (NRI: 0.6768, 95% CI: 0.5549-0.7987, p < 0.001). Conclusion The radiomics-clinical nomogram, based on multi-sequence MRI, effectively assesses the BCa recurrence risk. It outperforms both the radiomics model and the clinical model in predicting BCa recurrence risk. Critical relevance statement The radiomics-clinical nomogram, utilizing multi-sequence MRI, holds promise for predicting bladder cancer recurrence, enhancing individualized clinical treatment, and performing tumor surveillance.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] Enhancing recurrence risk prediction for bladder cancer using multi-sequence MRI radiomics
    Guoqiang Yang
    Jingjing Bai
    Min Hao
    Lu Zhang
    Zhichang Fan
    Xiaochun Wang
    Insights into Imaging, 15
  • [2] Editorial for "Multi-Sequence and Multi-Regional MRI-Based Radiomics Nomogram for the Preoperative Prediction of Muscle Invasion in Bladder Cancer"
    de Celis Alonso, Benito
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (01) : 270 - 271
  • [3] Multi-Sequence and Multi-Regional MRI-Based Radiomics Nomogram for the Preoperative Assessment of Muscle Invasion in Bladder Cancer
    Zhang, Lu
    Li, Xiaoyang
    Yang, Li
    Tang, Ying
    Guo, Junting
    Li, Ding
    Li, Shuo
    Li, Yan
    Wang, Le
    Lei, Ying
    Qiao, Hong
    Yang, Guoqiang
    Wang, Xiaochun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (01) : 258 - 269
  • [4] Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis
    Li, Lanqing
    Xiao, Feng
    Wang, Shouchao
    Kuang, Shengyu
    Li, Zhiqiang
    Zhong, Yahua
    Xu, Dan
    Cai, Yuxiang
    Li, Sirui
    Chen, Jun
    Liu, Yaou
    Li, Junjie
    Li, Huan
    Xu, Haibo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Radiomics model based on multi-sequence MRI for preoperative prediction of ki-67 expression levels in early endometrial cancer
    Si-Xuan Ding
    Yu-Feng Sun
    Huan Meng
    Jia-Ning Wang
    Lin-Yan Xue
    Bu-Lang Gao
    Xiao-Ping Yin
    Scientific Reports, 13
  • [6] Radiomics model based on multi-sequence MRI for preoperative prediction of ki-67 expression levels in early endometrial cancer
    Ding, Si-Xuan
    Sun, Yu-Feng
    Meng, Huan
    Wang, Jia-Ning
    Xue, Lin-Yan
    Gao, Bu-Lang
    Yin, Xiao-Ping
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Augmentation of MRI Multi-Sequence Radiomics Data to Improve Brain Tumor Classification
    Ogden, K.
    Salastekar, N.
    LaBella, D.
    Chakraborty, A.
    Oakes, E.
    Mangla, R.
    MEDICAL PHYSICS, 2019, 46 (06) : E564 - E564
  • [8] A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication
    Wei, Jingwei
    Yang, Guoqiang
    Hao, Xiaohan
    Gu, Dongsheng
    Tan, Yan
    Wang, Xiaochun
    Dong, Di
    Zhang, Shuaitong
    Wang, Le
    Zhang, Hui
    Tian, Jie
    EUROPEAN RADIOLOGY, 2019, 29 (02) : 877 - 888
  • [9] Multi-sequence MRI based Radiomics Model in Predicting Efficacy of Neoadjuvant Chemotherapy for Nasopharyngeal Carcinoma
    Wang, Y.
    Yin, G.
    Wang, J.
    Lang, J.
    Li, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S32 - S33
  • [10] A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication
    Jingwei Wei
    Guoqiang Yang
    Xiaohan Hao
    Dongsheng Gu
    Yan Tan
    Xiaochun Wang
    Di Dong
    Shuaitong Zhang
    Le Wang
    Hui Zhang
    Jie Tian
    European Radiology, 2019, 29 : 877 - 888